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1 σ-fields and random variables

Exercise 1.1. Let Ω = {1, . . . , 6} et A = {{1, 2, 3}, {1, 3, 5}}.

a) Describe F = σ(A), the σ-field generated by A.

Hint: For a finite set Ω, the number of elements of a σ-field on Ω is always a power of 2.

b) Give the list of non-empty elements G of F such that

if F ∈ F and F ⊂ G, then F = ∅ or G.

These elements are called the atoms of the σ-field F (cf. course). Equivalently, an event G ∈ F is not an
atom if there exists F ∈ F such that F 6= ∅, F ⊂ G and F 6= G.

The atoms of a F form a partition of the set Ω and they also generate the σ-field F in this case. (note
also that if m is the number of atoms of F , then the number of elements of F equals 2m)

c) Let X1(ω) = 1{1,2,3}(ω), X2 = 1{1,3,5}(ω) and Y (ω) = X1(ω) + X2(ω). Does it hold that σ(Y ) =
σ(X1, X2)?

Exercise 1.2. Let Ω = {1, . . . , n} and A = {A1, . . . , Am} be a collection of subsets of Ω with m =
O(log(n)). Design an algorithm that outputs the list of atoms of the σ-field σ(A). What is the worst-case
time-complexity of your algorithm?

Exercise 1.3. Let now Ω = [0, 1] and F = B([0, 1]) be the Borel σ-field on [0, 1].

a) What are the atoms of F?

b) Is it true in this case that the σ-field F is generated by its atoms?

c) Describe the σ-field σ({x}, x ∈ [0, 1]).

Exercise 1.4. Let Ω = {(i, j) : i, j ∈ {1, . . . , 6}}, F = P(Ω) and define the random variables X1(i, j) = i
and X2(i, j) = j.

a) What are σ(X1), σ(X2)?

b) Is X1 +X2 measurable with respect to one of these two σ-fields?

Exercise 1.5. Let F be a σ-field on a set Ω and X1, X2 be two F-measurable random variables taking
a finite number of values in R. Let also Y = X1 + X2. From the course, we know that it always holds
that σ(Y ) ⊂ σ(X1, X2), i.e., that X1, X2 carry together at least as much information as Y , but that the
reciprocal statement is not necessarily true.

a) Provide a non-trivial example of random variables X1, X2 such that σ(Y ) = σ(X1, X2).

b) Provide a non-trivial example of random variables X1, X2 such that σ(Y ) 6= σ(X1, X2).

c) Assume that there exists ω1 6= ω2 and a 6= b such that X1(ω1) = X2(ω2) = a and X1(ω2) = X2(ω1) = b.
Is it possible in this case that σ(Y ) = σ(X1, X2)?

Exercise 1.6. Let Ω =]− 1, 1] and (Xi, i = 1, . . . , 4) be a family of random variables on Ω defined as

Xi(ω) =

 1 if i−1
4 < ω ≤ i

4 ,
(−1)i if − i

4 < ω ≤ − i−1
4 ,

0 otherwise.

Describe the σ-field F = σ(Xi, i = 1, . . . , 4) using its atoms.
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Exercise 1.7. Using a traditional balance, three people (say A, B and C) try to measure the weight of
an object, which we assume not to exceed 100g.

For this measure, A has weights of 20g and 50g; B has weights of 20g only and C has weights of 10g only.
On the other hand, the number of weights available for each of them is unlimited.

Determine the amount of information that each person has on the weight of the object, and order theses
informations. In particular, determine who is able to decide whether the weight of the object is between
40g and 50g or not.

Remark: One assumes that when measuring, all weights are on the same side of the balance, with the
object on the other side.

2 Probability measures and distributions

Exercise 2.1. Let (Ω,F ,P) be a probability space. Using only the axioms given in the definition of a
probability measure, show the following properties:

a) If A,B ∈ F and A ⊂ B, then P(A) ≤ P(B) and P(B\A) = P(B)− P(A). Also, P(Ac) = 1− P(A).

b) If A,B ∈ F , then P(A ∪B) = P(A) + P(B)− P(A ∩B).

c) If (An, n ≥ 1) is a sequence of events in F , then P(∪∞n=1An) ≤
∑∞
n=1 P(An).

d) If (An, n ≥ 1) is a sequence of events in F such that An ⊂ An+1, ∀n ≥ 1, then P(∪∞n=1An) =
limn→∞ P(An).

e) If (An, n ≥ 1) is a sequence of events in F such that An ⊃ An+1, ∀n ≥ 1, then P(∩∞n=1An) =
limn→∞ P(An).

Exercise 2.2. a) Which of the following are cdfs?

1. F1(t) = exp(−e−t), t ∈ R 2. F2(t) = 1
1−e−t , t ∈ R

3. F3(t) = 1− exp(−1/|t|), t ∈ R 4. F4(t) = 1− exp(−et), t ∈ R

b) Let now F be a generic cdf. Which of the following functions are guaranteed to be also cdfs?

5. F5(t) = F (t2), t ∈ R 6. F6(t) = F (t)2, t ∈ R

7. F7(t) = F (1− exp(−t)), t ∈ R 8. F8(t) =

{
1− exp(−F (t)/(1− F (t))) if F (t) < 1

1 if F (t) = 1
t ∈ R
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Exercise 2.3. Let λ > 0 and X ∼ E(λ), i.e., X is a random variable with the exponential distribution,
whose cdf is given by

FX(t) = P({X ≤ t}) =

{
1− exp(−λt) if t ≥ 0

0 if t < 0

a) Compute the cdf of Y = Xa, where a ∈ R.

b) Deduce the expression for the pdf of Y , when it exists.

c) In particular, study the cases a = 2 and a = −1, and draw the corresponding pdfs for a fixed value of
λ.

d) Still for a fixed value of λ, which of the following two expressions is the largest when t > 0 gets large?

P({X2 ≥ t}) or P({X−1 ≥ t}) ?

Exercise 2.4. Let X1, . . . , Xn be i.i.d. ∼ E(1) random variables (i.e., they are independent and identically
distributed, all with the exponential distribution of parameter λ = 1).

a) Compute the cdf of Yn = min(X1, . . . , Xn).

b) How do P({Yn ≤ t}) and P({X1 ≤ t}) compare when n is large and t is such that t� 1
n ?

c) Compute the cdf of Zn = max(X1, . . . , Xn).

d) How do P({Zn ≥ t}) and P({X1 ≥ t}) compare when n is large and t is such that tG log(n) ?

Exercise 2.5. Let n ≥ 1 and x1, . . . , xn be arbitrary real numbers (not necessarily ordered). Their
empirical cdf is the function Fn : R→ R defined as

Fn(t) =
1

n
]{1 ≤ j ≤ n : xj ≤ t} t ∈ R

where ]A denotes the cardinality (= number of elements) of the set A.

a) Show that irrespective of the values of x1, . . . , xn, the function Fn is a cdf. Does this cdf admit a pdf?
What are the values possibly taken by Fn?

Assume now that x1, . . . , xn are i.i.d. samples from a distribution with cdf F .

Note: The function Fn becomes in this case a random cdf.

b) If t ∈ R is such that F (t) = 0, is it possible that: b1) Fn(t) > 0? b2) Fn(s) = 0 for some s ≥ t?

c) If t ∈ R is such that F (t) = 1, is it possible that: c1) Fn(t) < 1? c2) Fn(s) = 1 for some s ≤ t?

Note: We will see later in the course that in this case, Fn approaches F as n→∞.

Let now a, b > 0 be two fixed real numbers and let us make two hypotheses (with an equal prior):

H0: F is the cdf of a random variable X uniformly distributed in the interval [0, a].

H1: F is the cdf of a random variable Y uniformly distributed in the interval [0, b].

d) Let 0 < t < min(a, b). Given that Fn(t) = 1, what is the probability that Hypothesis H0 holds? Does
this probability depend on the value of t?

Hint. Use Bayes’ rule.
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Exercise 2.6. Let X1, . . . , Xn be n independent and identically distributed (i.i.d.) random variables
with common cdf FX .

a) Let Y = max(X1, . . . , Xn). Express the cdf FY of Y in terms of FX .

b) Let Z = min(X1, . . . , Xn). Express the cdf FZ of Z in terms of FX .

c) Application: Compute FY and FZ when X1, . . . , Xn are i.i.d.∼ U([0, 1]) random variables.
Compute also the corresponding pdfs pY and pZ .

d) Compute finally the cdf and pdf of 1− Y in this last example. What do you observe?

Exercise 2.7. Let F be a generic cdf. Which of the following are guaranteed to be also cdfs?

a) Fa(t) = F (t)17, t ∈ R.

b) Fb(t) = F (t17), t ∈ R.

c) Fc(t) = F (exp(t)), t ∈ R.

d) Fd(t) = 1− exp
(
− F (t)

1−F (t)

)
, t ∈ R.

Exercise 2.8. Let Ω = [0, 1]2, F = B([0, 1]2) and P be the probability measure defined on (Ω,F) defined
as

P( ]a, b[×]c, d[ ) = (b− a) · (d− c), for 0 ≤ a < b ≤ 1 and 0 ≤ c < d ≤ 1

which can be extended uniquely to all Borel sets in B([0, 1]2), according to Caratheodory’s extension
theorem.

Let us now consider the following two random variables defined on (Ω,F ,P):

X(ω1, ω2) = ω1 and Y (ω1, ω2) =
ω1 + ω2

2

a) Compute the cdf FX of X, as well as the cdf FY of Y .

b) Draw at random n independent copies X1, . . . , Xn of X, as well as n independent copies Y1, . . . , Yn of
Y . Draw then graphically the two (random) functions:

F
(n)
X (t) =

1

n

n∑
j=1

1{Xj≤t} and F
(n)
Y (t) =

1

n

n∑
j=1

1{Yj≤t}

What do you observe as n gets large?

Exercise 2.9. Let X be a random variable with cdf FX . Express the cdf of the following random
variables in terms of FX , and deduce their pdf when X is a continuous random variable.

a) Y1 = aX, for some a ∈ R\{0}.

b) Y2 = X + c, for some c ∈ R.

c) Y3 = X2.

d) Y4 = eX .

Exercise 2.10. Let F be a generic cdf. Which of the following are guaranteed to be also cdfs?

a) F1(t) = F (at), t ∈ R, for some a > 0 f) F6(t) = F (t)2, t ∈ R
b) F2(t) = F (bt), t ∈ R, for some b < 0 g) F7(t) = F (t)3, t ∈ R
c) F3(t) = F (t+ c), t ∈ R, for some c ∈ R h) F8(t) = 1

2 (1 + tanh(t)), t ∈ R
d) F4(t) = F (t2), t ∈ R i) F9(t) = lima→+∞

1
2 (1 + tanh(at)), t ∈ R

e) F5(t) = F (t3), t ∈ R j) F10(t) = lima→0+
1
2 (1 + tanh(at)), t ∈ R
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Exercise 2.11. Let X be a random variable whose cdf F is the devil’s staircase.

a) Write a code that allows you to sample (approximately) from F .

b) Consider n i.i.d. samples X1, . . . , Xn distributed according to F and draw on the same graph F and

Fn(t) =
1

n
]{1 ≤ j ≤ n : Xj ≤ t}, t ∈ R

Fn is called the empirical cdf of the n samples: please note that it is itself a random function!

c) Consider now n i.i.d. samples Y1, . . . , Yn distributed according the uniform distribution on [0, 1] and
with corresponding cdf G. Draw again on the same graph G(t) = t and

Gn(t) =
1

n
]{1 ≤ j ≤ n : Yj ≤ t}, t ∈ R

d) Imagine a simple statistical test based on the empirical cdf of a set of n i.i.d. samples that allows to
tell whether these samples are distributed according to F or G (the null hypothesis being that they are
distributed according to G).

e) Bayesian analysis:
Say there is a probability 0 < α < 1 (=prior) that all your samples are distributed according to F and a
probability 1−α that they are distributed according to G. As mentioned above, G is the null hypothesis,
which we will assume to be also more likely, so that α is assumed to be small. Compute the probabilities
of your test leading to 1) a false positive, 2) a false negative, i.e.,

1) P(the samples are distributed according to G | the test is positive)

2) P(the samples are distributed according to F | the test is negative)

3 Independence and convolution

Exercise 3.1. Let n ≥ 1, Ω = {1, 2, . . . , n}, F = P(Ω) and P be the probability measure on (Ω,F)
defined by P({ω}) = 1

n on the singletons and extended by additivity to all subsets of Ω.

a) Consider first n = 4. Find three subsets A1, A2, A3 ⊂ Ω such that

P(Aj ∩Ak) = P(Aj) · P(Ak) ∀j 6= k but P(A1 ∩A2 ∩A3) 6= P(A1) · P(A2) · P(A3)

b) Consider now n = 6. Find three subsets A1, A2, A3 ⊂ Ω such that

P(A1 ∩A2 ∩A3) = P(A1) · P(A2) · P(A3) but ∃j 6= k such that P(Aj ∩Ak) 6= P(Aj) · P(Ak)

c) Consider finally a generic probability space (Ω,F ,P) and three events A1, A2, A3 ∈ F such that

P(Aj ∩Ak) = P(Aj) · P(Ak) ∀j 6= k and P(A1 ∩A2 ∩A3) = P(A1) · P(A2) · P(A3)

Show that A1, A2, A3 are independent according to the definition given in the course.

Exercise 3.2. Let X,Y be two discrete random variables, each with values in {0, 1}.

a) Show that X ⊥⊥ Y if P({Y = 1}|{X = 0}) = P({Y = 1}|{X = 1}).

Let moreover Z = X ⊕ Y =

{
1, if X = 1, Y = 0 or X = 0, Y = 1,

0, otherwise.

b) Show that X ⊥⊥ Z if P({Y = 1}|{X = 0}) = P({Y = 0}|{X = 1}).
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c) Which assumption guarantees that both X ⊥⊥ Y and X ⊥⊥ Z?

d) Assume that none of the 3 random variables X,Y, Z is constant (i.e., takes a single value with prob-
ability 1). Can it be that the collection of the three random variables (X,Y, Z) is independent? Justify
your answer.

Exercise 3.3. Let X1, X2 be two independent and identically distributed (i.i.d.) N (0, 1) random vari-
ables. Compute the pdf of X1 +X2 (using convolution).

Exercise 3.4. Let X1, X2 be two i.i.d. random variables such that P({Xi = +1}) = P({Xi = −1}) = 1/2
for i = 1, 2. Let also Y = X1 +X2 and Z = X1 −X2.

a) Are Y and Z independent?

b) Same question with X1, X2 i.i.d.∼ N (0, 1) random variables (use here the change of variable formula
in order to compute the joint distribution of Y and Z).

Exercise 3.5. Let Ω = R2 and F = B(R2). Let also X1(ω) = ω1 and X2(ω) = ω2 for ω = (ω1, ω2) ∈ Ω
and let finally µ be a probability distribution on R. We consider below two different probability measures
defined on (Ω,F), defined on the “rectangles” B1×B2 (Caratheodory’s extension theorem then guarantees
that these probability measures can be extended uniquely to B(R2)).

a) P(1)(B1 ×B2) = µ(B1) · µ(B2)

b) P(2)(B1 ×B2) = µ(B1 ∩B2)

In each case, describe what is the relation between the random variables X1 and X2.

Exercise 3.6. Let λ, µ > 0 and let X,Y be two independent random variables such that X ∼ E(λ),
Y ∼ E(µ).

a) Compute the distribution of Z = X
X+Y (determining first the range of possible values of Z).

b) What do you obtain in the particular case λ = µ? Does the result depend on the value of λ?

c) Application: You just missed the bus and are now waiting at the bus stop. But the schedule on this
line is strange: the waiting time between any two buses is an exponential random variable of parameter
λ = 1 [min−1] (so the average waiting time between any two buses is 1

λ = 1 min) and these waiting times
are independent of each other. Someone from the bus company comes and tells you that he knows for a
fact that the second bus will arrive at this stop 3 minutes from now. What information do you have on
the arrival time of the first bus?

4 Expectation

Exercise 4.1. Let λ > 0 and X ∼ E(λ), and let us define, as in Exercise 3 of Homework 2, Y = Xa,
where a ∈ R.

a) For what values of a ∈ R does it hold that E(Y ) < +∞?

b) For what values of a ∈ R does it hold that E(Y 2) < +∞?

c) For what values of a ∈ R is Var(Y ):

c1) well-defined and finite? c2) well-defined but infinite? c3) ill-defined?

d) Compute E(Y ) and Var(Y ) for the values of a ∈ Z such that these quantities are well-defined.

Hint: Use integration by parts, recursively.
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Exercise 4.2. Let µ ∈ R and λ > 0 be fixed numbers, and let X be a Cauchy random variable with pdf

pX(x) =
C

λ2 + (x− µ)2
, x ∈ R

a) Compute the constant C and draw the pdf pX for some values of µ and λ.

Hint: A primitive of 1
1+x2 is arctan(x).

b) Are E(X) and Var(X) well-defined?

c) What is your interpretation of the parameters µ and λ ?

d) Assume now µ = 0 and define Y = 1
X . Compute the pdf of Y (neglecting the “problem” that the

function 1/x exploses in x = 0; this is actually not a problem, as P({X = 0}) = 0).

Exercise 4.3. For a generic non-negative random variable X defined on a probability space (Ω,F ,P),

it holds that E(X) =
∫ +∞

0
P({X ≥ t}) dt. Indeed, for every ω ∈ Ω, we have

X(ω) =

∫ X(ω)

0

1 dt =

∫ +∞

0

1{t≤X(ω)} dt

so taking expectation on both sides (and swapping expectation and integral, which is allowed here, as
everything is positive), we obtain the above formula.

a) Use this formula to compute E(X) for X ∼ E(λ) and check that the result is in accordance with
Exercise 1 above.

b) Particularize the above formula for E(X) to the case where X takes values in N only.

c) Use this new formula to compute E(X) for X ∼ Bern(p) and X ∼ Geom(p) for some 0 < p < 1. Check
in both cases that the result is in accordance with the classical computation of E(X).

Reminders: X ∼ Bern(p) means P({X = 1}) = p = 1− P({X = 0}).
X ∼ Geom(p) means P({X = k}) = (1− p) pk for k ∈ N.

Exercise 4.4. Check that the distributions below are well defined distributions and compute, when they
exist, the mean and the variance of these distributions.

A) Discrete distributions:

a) Bernoulli B(p), p ∈ [0, 1]: P(X = 1) = p, P(X = 0) = 1− p.

b) binomial Bi(n, p), n ≥ 1, p ∈ [0, 1]: P(X = k) =

(
n
k

)
pk (1− p)n−k, 0 ≤ k ≤ n.

c) Poisson P(λ), λ > 0: P(X = k) = λk

k! e
−λ, k ≥ 0.

B) Continuous distributions:

d) uniform U([a, b]), a < b: pX(x) = 1
b−a 1[a,b](x), x ∈ R.

e) Gaussian N (µ, σ2), µ ∈ R, σ > 0: pX(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
, x ∈ R.

f) Cauchy C(λ), λ > 0: pX(x) = 1
π

λ
λ2+x2 , x ∈ R.

g) exponential E(λ), λ > 0: pX(x) = λ e−λx, x ∈ R+.

h) Gamma Γ(t, λ), t, λ > 0: pX(x) = (λx)t−1 λ e−λx

Γ(t) , x ∈ R+, where Γ(t) :=
∫∞

0
dx xt−1 e−x.
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Exercise 4.5. a) Let X be a Poisson random variable with parameter λ > 0, i.e., P({X = k}) = λk

k! e
−λ,

k ≥ 0. Compute successively:

i) E(X) ii) E(X(X − 1)) iii) Var(X)

b) Let X be a centered Gaussian random variable of variance σ2. Compute successively:

i) E(X4) ii) E(exp(X)) iii) E(exp(−X2))

Exercise 4.6. Let µ ∈ R, σ > 0 and X be a continuous random variable whose pdf is given by

pX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
a) Draw M i.i.d. samples X1, . . . , XM according to pX , compute numerically

µM =
1

M

M∑
j=1

Xj and σM =

√√√√ 1

M − 1

M∑
j=1

(Xj − µM )2

and plot these two quantities as a function of M on a graph. What do you observe as M increases?

b) Plot the empirical cdf of X1, . . . , XM for three different values of M (e.g., M =10, 100 and 1’000).
What do you observe as M increases?

c) Consider now M ×K i.i.d. samples {Xm,k, 1 ≤ m ≤ M, 1 ≤ k ≤ K}, with a fixed K =1’000, as well
as the empirical means

EM,k =
1

M
(X1,k + . . .+XM,k), 1 ≤ k ≤ K

Plot the empirical cdf of EM,1, . . . , EM,K for the same three different values of M as above. Again, what
do you observe as M increases?

Let again µ ∈ R, σ > 0 and Y be a random variable whose pdf is given by

pY (y) =
1

π

σ

σ2 + (y − µ)2
, y ∈ R

d-e-f) Same questions as in a-b-c) with the X samples replaced by the Y samples. (NB: In order to
sample from Y , you should first compute its cdf).

Exercise 4.7. Let λ > 0 and X be an E(λ) random variable, whose cdf is given by

FX(t) =

{
1− exp(−λt) for t ≥ 0

0 for t < 0

Let also Y = eX . We would like first to estimate numerically the expectation and the variance of Y for
various values of λ > 0. Here is how to proceed:

a) Assuming that drawing a uniform random variable U in the interval [0, 1] is given, propose a method
to draw X ∼ E(λ) (and subsequently Y = eX).

b) Draw n independent copies Y1, . . . Yn of Y and compute their empirical average and standard deviation

µ̂n =
1

n

n∑
j=1

Yj and σ̂2
n =

1

n− 1

n∑
j=1

(Yj − µ̂n)2

for various values of n (say, n =10’000, 100’000 and 1’000’000, for example). Repeat the experiment for
multiple values of λ > 0. What do you observe?

c) Choose now a fixed large value of n and represent both µ̂n and σ̂n as a function of λ > 0. Again, what
do you observe?

d) Compute finally the theoretical distribution of Y , as well as its expectation and variance. Relate this
to the numerical results you have obtained above.
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5 Characteristic function

Exercise 5.1. The aim of the present exercise is to answer the following question:

Is it true that if φX+Y (t) = φX(t)φY (t) ∀t ∈ R, then X ⊥⊥ Y ? (1)

Let X,Y be two independent random variables with the same characteristic function φ(t) = exp(−|t|),
t ∈ R.

a) Compute the characteristic function of X + Y .

b) Compute the characteristic function of 2X.

c) Conclude about question (2).

Exercise 5.2. a) Let X be a Poisson random variable with parameter λ > 0. Compute its characteristic
function φX .

b) Show that for a discrete random variable X with values in Z, the following inversion formula holds:

P({X = k}) =
1

2π

∫ π

−π
e−itk φX(t) dt, ∀k ∈ Z

c) Use the above formula to deduce the distribution of the random variable X with values in Z whose
characteristic function is given by

φX(t) = cos(t), t ∈ R

d) Without solving part c), how could you be sure that φX is indeed a characteristic function?

Exercise 5.3. Let X be a discrete random variable with values in a countable set C. Show that for all
x ∈ C,

px = P({X = x}) = lim
T→∞

1

2T

∫ T

−T
e−itx φX(t) dt.

Exercise 5.4. Let λ > 0 and X be a random variable whose characteristic function φX is given by

φX(t) = exp(−λ|t|), t ∈ R

a) What can you deduce on the distribution of X from each of the following facts?

i) φX is not differentiable in t = 0.

ii)
∫
R |φX(t)| dt < +∞.

b) Use the inversion formula seen in class to compute the distribution of X.

c) Let Y = 1
X . Using the change of variable formula (not worrying about the fact that X might take the

value 0, as this is a negligible event), compute the distribution of Y .

d) Let now X1, . . . , Xn be n independent copies of the random variable X. What are the distributions of

Zn =
X1 + . . .+Xn

n
and Wn =

n
1
X1

+ . . .+ 1
Xn

?

e) What oddities do you observe in the results of part d)? (there are at least two)

10



Exercise 5.5. Compute the characteristic function of the following random variables:

a) X ∼ Bi(n, p), with P({X = k}) =
(
n
k

)
pk(1− p)n−k, k ∈ {0, . . . , n}.

b) X ∼ Geom(p), with P({X = k}) = (1− p)k−1p, k ≥ 1.

c) X has the exponential distribution on R with pdf pX(x) = λ
2 exp(−λ|x|), x ∈ R.

d*) X has the Cauchy distribution on R with pdf pX(x) = λ
π (λ2+x2) , x ∈ R.

6 Random vectors and Gaussian random vectors

Exercise 6.1. a) Let X be a Gaussian random vector of dimension d with expectation µ and covariance
matrix A. Let B be another d× d matrix. What is the distribution of Y = BX?

b) Deduce from a) that X and V X have the same distribution when V is an orthogonal matrix and X
is a centered Gaussian random vector whose covariance matrix is a multiple of the identity matrix (i.e.,
A = λ I for some λ ∈ R).

Exercise 6.2. Let X1, X2 be two i.i.d. ∼ N (0, 1) random variables. Consider the pair of random variables
(R,Θ) defined by the change of variable:

X1 = R cos(Θ) and X2 = R sin(Θ)

a) Compute the joint pdf of R and Θ using the change of variable formula:

pR,Θ(r, θ) = pX1,X2
(r cos(θ), r sin(θ)) · |J(r, θ)|

where J(r, θ) is the Jacobian of the transformation. What do you observe?

b) Compute the marginals pR(r) and pΘ(θ).

c) Compute the joint distribution of (X1

R ,
X2

R ) = (cos(Θ), sin(Θ)).

d) Compute the pdf of R2 and that of X1

R = cos(Θ).

Exercise 6.3. a) Let X1, X2 be two independent Gaussian random variables such that Var(X1) =
Var(X2). Show, using characteristic functions or a result from the course, that X1 + X2 and X1 − X2

are also independent Gaussian random variables.

b) Let X1, X2 be two independent square-integrable random variables such that X1 + X2, X1 −X2 are
also independent random variables. Show that X1, X2 are jointly Gaussian random variables such that
Var(X1) = Var(X2).

Note. Part b), also known as Darmois-Skitovic’s theorem, is considerably more challenging than part a)!
Here are the steps to follow in order to prove the result (but please skip the first two).

Step 1*. (needs the dominated convergence theorem, which outside the scope of this course)
If X is a square-integrable random variable, then φX is twice continuously differentiable.

Step 2*. (quite technical) Under the assumptions made, φX1 and φX2 have no zeros (so log φX1 and
log φX2

are also twice continuously differentiable, according to the previous step).

Step 3. Let f1 = log φX1 and f2 = log φX2 . Show that there exist functions g1, g2 satisfying

f1(t1 + t2) + f2(t1 − t2) = g1(t1) + g2(t2) ∀t1, t2 ∈ R

11



Step 4. If f1, f2 are twice continuously differentiable and there exist functions g1, g2 satisfying

f1(t1 + t2) + f2(t1 − t2) = g1(t1) + g2(t2) ∀t1, t2 ∈ R

then f1, f2 are polynomials of degree less than or equal to 2. Hint: differentiate!

Step 5. If X is square-integrable and log φX is a polynomial of degree less than or equal to 2, then X is
a Gaussian random variable.

Hint. If X is square-integrable, then you can take for granted that φX(0) = 1, φ′X(0) = iE(X) and
φ′′X(0) = −E(X2).

Step 6. From the course, deduce that X1, X2 are jointly Gaussian and that Var(X1) = Var(X2).

7 Inequalities

Exercise 7.1. a) Let X be a square-integrable random variable such that E(X) = 0 and Var(X) = σ2.
Show that

P({X ≥ t}) ≤ σ2

σ2 + t2
for t > 0

Hint: You may try various versions of Chebyshev’s inequality here, but not all of them work. A possibility
is to use the function ψ(x) = (x+ b)2, where b is a free parameter to optimize (but watch out that only
some values of b ∈ R lead to a function ψ that satisfies the required hypotheses).

b) Deduce from a) that for any square-integrable random variable X with expectation µ and variance
σ2, the following inequality holds:

P({X ≥ µ+ σ}) ≤ 1

2

c) Numerical application: Check the inequality in b) for X ∼ Bern( 1
2 ).

d) (Paley-Zygmund’s inequality) Let X be a square-integrable random variable such that E(X) > 0.
Show that

P({X > t}) ≥ (E(X)− t)2

E(X2)
∀0 ≤ t ≤ E(X)

Hint: Use first Cauchy-Schwarz’ inequality with the random variables X and Y = 1{X>t}.

e) Deduce from d) that for any square-integrable random variable X with expectation µ > 0 and variance
σ2 satisfying 0 ≤ σ ≤ µ, the following inequality holds:

P({X > µ− σ}) ≥ σ2

σ2 + µ2

f) Numerical application: Check the inequality in e) for X ∼ Bern( 1
2 ).

Exercise 7.2. (Kingman’s bound)
Let D1, X be independent and square-integrable random variables such that E(X) = µ ∈ R, Var(X) =
σ2 > 0 and let us define

D2 = (D1 +X)+ = max(D1 +X, 0)

a) Show that if E(X) = µ < 0 and D1 and D2 are identically distributed, then

d = E(D1) = E(D2) ≤ σ2

2|µ|

Hint: Define Y = (D1 +X)− = max(−(D1 +X), 0) and use the fact that D2 · Y = 0.

12



b) Show that if on the contrary E(X) = µ > 0 and E(D1) ≥ 0, then E(D2) ≥ E(D1) + µ.

Application: D1, D2 can be interpreted as the queuing delays for two consecutive customers in a queue
and X as the difference between the service time of the first customer and the inter-arrival time between
the two customers. If E(X) < 0 (i.e., if the service time is on average smaller than the inter-arrival time
between the two customers), then the queue is stable and we expect in this case that in the long run,
each customer experiences a delay with the same distribution. The above result provides then an upper
bound on the average delay of each customer. If on the contrary E(X) > 0, then the expected queuing
delay will increase steadily as more customers arrive.

Exercise 7.3. a) Let X be a random variable such that X(ω) ∈ [0, 1] for all ω ∈ Ω. Show that

if E(X) ≥ 1

2
then P({X ≤ 1

4
}) ≤ 2

3
b) Find a random variable X with values in [0, 1] satisfying both E(X) = 1

2 and P
({
X ≤ 1

4

})
= 2

3 .

c) Let now X be a square-integrable and non-negative random variable. Show that

1. P({X = 0}) ≤ Var(X)

E(X)2

2. P({X = 0}) ≤ Var(X)

E(X2)

3. P({X > 0}) ≥ E(X)2

E(X2)

Hint for 2 and 3: Use Cauchy-Schwarz’ inequality with the random variables X and Y = 1{X>0}.

d) Verify the claims of part c) for X ∼ Poisson(λ), where λ > 0.

Exercise 7.4. Let X be a centered random variable with variance σ2. Using Chebyshev’s inequality,
show that:

a) P({|X| ≥ a}) ≤ σ2

a2
and P({|X| ≥ a}) ≤ 2σ2

a2 + σ2
.

b) P({X ≥ a}) ≤ σ2

a2 + σ2
(use ψ(x) = (x+ b)2 with b ≥ 0, then minimize over b).

Note that in general, there is no guarantee that P({X ≥ a}) = 1
2 P({|X| ≥ a}), so that the inequality in

b) is not a simple consequence of the second one in a).

8 Convergence in probability, almost sure convergence and the
laws of large numbers

Exercise 8.1. Let (Xn, n ≥ 1) be independent random variables such that Xn ∼ Bern(1 − 1
(n+1)α ) for

n ≥ 1, where α > 0 is some constant. Let also Yn =
∏n
j=1Xj for n ≥ 1.

a) What minimal condition on the parameter α > 0 ensures that Yn
P→

n→∞
0 ?

Hint: Use the approximation 1− x ' exp(−x) for x small.

b) Under the same condition as that found in a), does it also hold that Yn
L2

→
n→∞

0 ?

c) Under the same condition as that found in a), does it also hold that Yn →
n→∞

0 almost surely ?

Hint: If Yn = 0, what can you deduce on Ym for m ≥ n ?
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Exercise 8.2. Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables defined on a common probability
space (Ω,F ,P) and such that P({Xn = 2}) = P({Xn = 0}) = 1

2 for every n ≥ 1. Let also (Yn, n ≥ 1) be
the sequence of random variables defined as

Yn =

n∑
j=1

Xj

3j
n ≥ 1

a) Run a numerical simulation illustrating the fact that there exists a limiting random variable Y such
that Yn →

n→∞
Y almost surely.

b) Prove theoretically that such a random variable Y exists.

c) Run a numerical simulation illustrating the fact that E((Yn − Y )2) →
n→∞

0.

Hint. The aim here is not to compute the expectation, but to estimate it via multiple runs.

d) Prove theoretically that Yn
L2

→
n→∞

Y .

e) Run a numerical simulation allowing to draw the empirical distribution of Y (using either a histogram
or its empirical cdf). Can you guess what this distribution is?

Exercise 8.3. a) Show that if (An, n ≥ 1) are independent events in F and
∑
n≥1 P(An) =∞, then

P
( ⋃
n≥1

An

)
= 1

Hints: - Start by observing that the statement is equivalent to P
(⋂

n≥1A
c
n

)
= 0.

- Use the inequality 1− x ≤ e−x, valid for all x ∈ R.

b) From the same set of assumptions, reach the following stronger conclusion with a little extra effort:

P({ω ∈ Ω : ω ∈ An infinitely often}) = P
( ⋂
N≥1

⋃
n≥N

An

)
= 1

which is actually the statement of the second Borel-Cantelli lemma.

c) Application: Let (Xn, n ≥ 1) be a sequence of independent random variables such that for some ε > 0,∑
n≥1 P({|Xn| > ε}) = +∞. What can you conclude on the almost sure convergence of the sequence Xn

towards the limiting value 0?

Exercise 8.4. a) Let (Xn, n ≥ 1) be a sequence of independent random variables such that
P({Xn = n}) = pn = 1− P({Xn = 0}) for n ≥ 1.

What minimal condition on the sequence (pn, n ≥ 1) ensures that a1) Xn
P→

n→∞
0? a2) Xn

L2

→
n→∞

0? a3)

Xn →
n→∞

0 almost surely?

b) Let (Yn, n ≥ 1) be a sequence of independent random variables such that Yn ∼ U([0, un]) for n ≥ 1.

What minimal condition on the sequence (un, n ≥ 1) ensures that b1) Yn
P→

n→∞
0? b2) Yn

L2

→
n→∞

0? b3)

Yn →
n→∞

0 almost surely?

c) Let (Zn, n ≥ 1) be a sequence of independent random variables such that Zn ∼ Cauchy(λn) for n ≥ 1.

What minimal condition on the sequence (λn, n ≥ 1) ensures that c1) Zn
P→

n→∞
0? c2) Zn

L2

→
n→∞

0? c3)

Zn →
n→∞

0 almost surely?

Hint: Use the first and second Borel-Cantelli lemmas to answer questions about almost sure convergence.
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Exercise 8.5. (extended law of large numbers)
Let (µn, n ≥ 1) be a sequence of real numbers such that

lim
n→∞

µ1 + . . .+ µn
n

= µ ∈ R

Let (Xn, n ≥ 1) be a sequence of square-integrable random variables such that

E(Xn) = µn, ∀n ≥ 1 and Cov(Xn, Xm) ≤ C1 exp(−C2 |m− n|) ∀m,n ≥ 1

for some contants C1, C2 > 0 (the random variables Xn are said to be weakly correlated). Let finally
Sn = X1 + . . .+Xn.

a) Show that
Sn
n

P→
n→∞

µ

b) Is it also true that
Sn
n
→

n→∞
µ almost surely?

In order to check this, you need to go through the proof of the strong law of large numbers made in class.
Does that proof need the fact that the random variables Xn are independent?

c) Application: Let (Zn, n ≥ 1) be a sequence of i.i.d. ∼ N (0, 1) random variables, x, a ∈ R and
(Xn, n ≥ 1) be the sequence of random variables defined recursively as

X1 = x, Xn+1 = aXn + Zn+1 n ≥ 1

For what values of x, a ∈ R does the sequence (Xn, n ≥ 1) satisfy the assumptions made in a)? Compute
µ in this case.

Exercise 8.6. (another extension of the weak law of large numbers)
Let (Xn, n ≥ 1) be a sequence of i.i.d. square-integrable random variables such that E(X1) = µ ∈ R and
Var(X1) = σ2 > 0.

Let (Tn, n ≥ 1) be another sequence of random variables, independent of the sequence (Xn, n ≥ 1), with
all Tn taking values in the set of natural numbers N∗ = {1, 2, 3, . . .}. Define

p
(n)
k = P({Tn = k}) for n, k ≥ 1

so
∑
k≥1

p
(n)
k = 1 ∀n ≥ 1


a) Find a sufficient condition on the numbers p

(n)
k guaranteeing that

X1 + . . .+XTn

Tn

P→
n→∞

µ (2)

Hint: You should use the law of total probability here: if A is an event and the events (Bk, k ≥ 1) form
a partition of Ω, then:

P(A) =
∑
k≥1

P(A |Bk)P(Bk)

b) Apply the above criterion to the following case: each Tn is the sum of two independent geometric
random variables Gn1 +Gn2, where both Gn are distributed as

P({Gn = k}) = qk−1
n (1− qn) k ≥ 1

where 0 < qn < 1.

b1) Compute first the distribution of Tn, as well as E(Tn), for each n ≥ 1.

b2) What condition on the sequence (qn, n ≥ 1) ensures that conclusion (2) holds?

Hint: Solving question b1) above may help you guessing what the answer to b2) should be.
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Exercise 8.7. (strong law of large numbers in a “simple” setup)
Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables such that E(X1) = 0, E(X2

1 ) = 1 and E(X4
1 ) =

C < ∞. Let also Sn = X1 + . . . + Xn. Without relying on the proof of the strong law made in class,
show that

Sn
n
→

n→∞
0 almost surely.

Hint: As often, Chebyshev’s inequality and the (first) Borel-Cantelli lemma will be useful here.

Exercise 8.8. Let (Xn, n ≥ 1) be a sequence of independent random variables such that X1 = 0 and

P({Xn = +n}) = P({Xn = −n}) =
1

2n log n
P({Xn = 0}) = 1− 1

n log n
n ≥ 2

Let also Sn = X1 + . . .+Xn. Show that

Sn
n

P→
n→∞

0 but
Sn
n
6→

n→∞
0 a.s.

NB: For the proof of the second statement (which is more challenging than the first one), you will need
the second Borel-Cantelli lemma.

Exercise 8.9. a) Let Y ∼ U([0, 1]) and Xn =
√
n 1{Y≤1/n} for n ≥ 1.

Does the sequence of random variables (Xn, n ≥ 1) converge in L2? in probability? almost surely?

b) Let Yn be i.i.d. ∼ U([0, 1]) random variables and Xn =
√
n 1{Yn≤1/n} for n ≥ 1.

Does the sequence of random variables (Xn, n ≥ 1) converge in L2? in probability? almost surely?

Exercise 8.10. Let (Xn, n ≥ 1) be a sequence of i.i.d. non-negative random variables defined on a
common probability space (Ω,F ,P) and such that E(| log(X1)|) < +∞. Let also (Yn, n ≥ 1) be the
sequence defined as

Yn =

 n∏
j=1

Xj

1/n

, n ≥ 1

a) Show that there exists a constant µ > 0 such that Yn →
n→∞

µ almost surely.

b) Compute the value of µ in the case where Xn = exp(Nn) and (Nn, n ≥ 1) are i.i.d. ∼ N (0, 1) random
variables.

c) In this case, look for the tightest possible upper bound on P({Yn > t}) for n ≥ 1 fixed and t > µ.

Hint. You have two options here. One is to use Chebyshev’s inequality with the function ψ(x) = xp and
p > 0 (and then optimize over p) in order to upperbound

P({Yn > t}) = P


n∏
j=1

Xj > tn




for t > µ. The other option is left to your imagination. . .
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Exercise 8.11. a) Let X1, . . . , Xn be i.i.d. random variables with common cdf F . Express the cdf of
Sn = max(X1, . . . , Xn) in terms of F .

b) Let X be a discrete random variable with values in N = {0, 1, 2, . . .}. Show that

E(X) =

∞∑
k=1

P({X ≥ k}).

Let now X1, . . . , Xn be i.i.d. random variables such that

P({X1 = k}) =
1

2k+1
, k ≥ 0.

and let Sn = max(X1, . . . , Xn).

c) Show that if k ≥ c log2 n with c > 1, then

P({Sn ≥ k}) →
n→∞

0.

Hint: limn→∞(1 + f(n))n =

{
1 if f(n) = o(1/n)

ex if f(n) = x/n

d) Deduce from there that there exist positive constants C1 < C2 such that

C1 log2 n ≤ E(Sn) ≤ C2 log2 n.

e) Show that
Sn
n

P→
n→∞

0.

f) Show that
Sn
n
→

n→∞
0 almost surely.

Hint: Chebyshev’s inequality and the Borel-Cantelli lemma will be useful here.

Exercise 8.12. Let (Xn, n ≥ 0) be a sequence of random variables and X be another random variable,
all defined on the same probability space (Ω,F ,P).

a) Show that if Xn
P→

n→∞
X, then there exists a subsequence (Xnk , k ≥ 1) such that Xnk →

k→∞
X almost

surely.

Hint: The Borel-Cantelli lemma may again be useful here...

Let us now define for two random variables X and Y defined on (Ω,F ,P):

d(X,Y ) = E
(
|X − Y |

1 + |X − Y |

)
.

This is known as the Ky-Fan metric: it is a metric for convergence in probability (notice that the above
expectation is always finite, whatever X and Y ).

b) Show that the triangle inequality is satisfied, namely that

d(X,Z) ≤ d(X,Y ) + d(Y,Z), for any triple of random variables X,Y, Z.

c) Show that Xn
P→

n→∞
X if and only if d(Xn, X) →

n→∞
0.
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9 Convergence in distribution and the central limit theorem

Exercise 9.1. (the birthday problem)
Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables, each uniform on {1, . . . , N}. Let also

TN = min{n ≥ 1 : Xn = Xm for some m < n}

(notice that whatever happens, TN ∈ {2, . . . , N + 1}). Show that

P
({

TN√
N
≤ t
})

→
N→∞

1− e−t
2/2, ∀t ≥ 0

Remarks:
- Approximations are allowed here!

- Please observe that the limit distribution is not the Gaussian distribution!

Numerical application: Use this to obtain a rough estimate of P ({T365 ≤ 22}) and P ({T365 ≤ 50}) (i.e.,
what is the probability that among 22 / 50 people, at least two share the same birthday?)

Exercise 9.2. Someone proposes you to play the following game: start with an initial amount of S0 > 0
francs, of your choice. Then toss a coin: if it falls on heads, you win S0/2 francs; while if it falls on tails,
you lose S0/2 francs. Call S1 your amount after this first coin toss. Then the game goes on, so that your
amount after coin toss number n ≥ 1 is given by

Sn =


Sn−1 + Sn−1

2 if coin number n falls on heads

Sn−1 − Sn−1

2 if coin number n falls on tails

We assume moreover that the coin tosses are independent and fair, i.e., with probability 1/2 to fall on
each side. Nevertheless, you should not agree to play such a game: explain why!

Hints:

First, to ease the notation, define Xn = +1 if coin n falls on heads and Xn = −1 if coin n falls on tails.
That way, the above recursive relation may be rewritten as Sn = Sn−1 (1 + Xn

2 ) for n ≥ 1.

a) Compute recursively E(Sn); if it were only for expectation, you could still consider playing such a
game, but. . .

b) Define now Yn = log(Sn/S0), and use the central limit theorem to approximate P({Yn > t}) for a fixed
value of t ∈ R and a relatively large value of n. Argue from there why it is definitely not a good idea to
play such a game! (computing for example an approximate value of P({S100 > S0/10}))

Exercise 9.3. Let λ > 0 be fixed. For a given n ≥ dλe, let X
(n)
1 , . . . , X

(n)
n be i.i.d. Bernoulli(λ/n)

random variables and let Sn = X
(n)
1 + . . .+X

(n)
n .

a) Compute E(Sn) and Var(Sn) for a fixed value of n ≥ dλe.

b) Deduce the value of µ = limn→∞ E(Sn) and σ2 = limn→∞Var(Sn).

c) Compute the limiting distribution of Sn (as n→∞).

Hint: Use characteristic functions. You might also have a look at tables of characteristic functions of
some well known distributions in order to solve this exercise.
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For a given n ≥ 1, let now (Y
(n)
m , m ≥ 1) be a sequence of i.i.d. Bernoulli(1/n) random variables and let

Tn = Y
(n)
1 + . . .+ Y

(n)
dλne

where λ > 0 is the same as above.

d) Compute the limiting distribution of Tn (as n→∞).

e) Is it possible to talk about convergence in probability or almost sure convergence of any of the two
sequences Sn or Tn? Justify your answer!

Exercise 9.4. (application of Lindeberg’s principle to non i.i.d. random variables)
Let (σn, n ≥ 0) be a sequence of (strictly) positive numbers and (Xn, n ≥ 1) be a sequence of independent
random variables such that E(Xn) = 0, Var(Xn) = σ2

n and E(|Xn|3) ≤ K σ3
n for every n ≥ 1 (note that

the constant K is uniform over all values of n).

For n ≥ 1, define also Vn = Var(X1 + . . .+Xn) = σ2
1 + . . .+ σ2

n.

Using Lemma 9.12 in the lecture notes (equivalently, Lemma 2 in the video lecture 9.2b), find a sufficient
condition on the sequence (σn, n ≥ 1) guaranteeing that

1√
Vn

(X1 + . . .+Xn)
d→

n→∞
Z ∼ N (0, 1)

Note: From the course, you already know a sufficient condition: σn = 1 for all n ≥ 1, but this is too
strong! The aim here is to find a sufficient condition which is most general possible.

b) Which of the following sequences (σn, n ≥ 1) satisfy the condition you have found in a)?

b1) σn = n b2) σn = 1
n b3) σn = 2n

Hint: The following might be useful:

n∑
j=1

jα =


Θ(nα+1) if α > −1

Θ(log(n)) if α = −1

Θ(1) if α < −1

Exercise 9.5. Let (Xn, n ≥ 1) be a sequence of independent random variables such that

P
({
Xn = +1/

√
n
})

= P
({
Xn = −1/

√
n
})

=
1

2

and let, for n ≥ 1,
Yn = X1 + . . .+Xn and Zn = Xn+1 + . . .+X2n

a) Run multiple times the process Y and draw a histogram of Yn for n = 100, n = 1′000 and n = 10′000,
respectively. Draw also the graphs of the empirical mean and standard deviation of Yn as a function
of n. Do you observe that the histogram of Yn converges as n grows large (i.e., that Yn converges in
distribution)?

b) Same questions for the process Z.

c) In the case(s) where you observed convergence in distribution, prove that the sequence of random
variables indeed converges to a limit, using characteristic functions. What is the limiting distribution?

Hint: You may use approximations here, as well as the following:

n2∑
j=n1+1

jα '
∫ n2

n1

dxxα

as n2 gets large (and n1 is either fixed or getting large also).
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Exercise 9.6. (why it is not a good idea to play at roulette too many times)
On a classical roulette game with 38 numbers (including the 0 and the 00), a player bets uniquely on red,
361 times in a row. At each turn, he bets exactly one franc (he therefore wins one franc if red comes out
and loses one franc if this is not the case). Assuming that the roulette wheel is balanced and that the
turns are independent from each other, give a rough estimate of:

a) the average player’s fortune at the end of the 361 games;

b) the probability that he has actually won some money.

NB: Remember that the numbers 0 and 00 are neither red nor black on a classical roulette.

Exercise 9.7. Let λ > 0 and (Xn, n ≥ 1) be a sequence of i.i.d. random variables with common
characteristic function φX1

given by

φX1
(t) = exp(−λ |t|) t ∈ R

a) Compute the distribution of X1 using the inversion formula. Does X1 admit a pdf?

b) Compute P({|X1| ≤ λ}).

Let now Sn = X1 + . . .+Xn.

c) Compute the characteristic function of Sn/n.

d) To what random variable Z does Sn/n converge in distribution as n→∞?

e*) Does Sn/n converge also in probability to Z?

Exercise 9.8. Let us consider the following experiments.

A) Two dice are rolled independently; the result X is the sum of the two.

B) Two different numbers are chosen uniformly in {1, . . . , 6}; the result Y is the sum of the two.

C) Same as B), but one number is chosen between 1 and 3, while the other is chosen between 4 and 6;
the result Z is the sum of the two.

D) Same as B), but one number is chosen to be odd, while the other is chosen to be even; the result W
is the sum of the two.

Assume now that each of these experiments is run n times independently, and let Sn/n denote the average
of these n runs.

a) For each experiment, compute E(Sn/n). Does this value depend on the experiment?

b) For which experiment is Sn/n the closest to its actual expectation (on average)?

c) For this experiment in particular and n = 1′000, estimate approximately the value t > 0 such that

P(|Sn/n− E(Sn/n)| ≤ t) = 95%

10 Moments and Carleman’s theorem

Exercise 10.1. Let X be a bounded random variable.

a) Show that E(|X|k) < +∞ for every k ≥ 1.

b) Show that if ` ≥ k ≥ 1, then E(|X|`)1/` ≥ E(|X|k)1/k.

c) Show that if `, k ≥ 1, then E(|X|k+`) ≤
√
E(X2k)E(X2`).

d) Show that if X(ω) ∈ [0, 1] for every ω ∈ Ω and ` ≥ k ≥ 1, then E(X`) ≤ E(Xk) ≤ 1.
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e) Given the relations in b), c) and d), for which of the following sequences of non-negative numbers
(mk, k ≥ 1) does there possibly exist a random variable X taking values in the interval [0, 1] such that
mk = E(Xk) for every k ≥ 1?

1. (mk =
1

k + 1
, k ≥ 0) 2. (mk = 1− 1

k + 1
, k ≥ 0) 3. (mk =

1

2k
, k ≥ 0) 4. (mk =

1

kk
, k ≥ 0)

In the cases for which the answer is affirmative, can you guess what the corresponding distribution of X is?

Exercise 10.2. a) Let X ∼ N (0, 1). Compute all the moments of the random variable Y = exp(X). Do
these satisfy Carleman’s condition?

b) Let W be the discrete random variable such that

P({W = j}) = C exp(−j2/2) j ∈ Z

where C = 1/
∑
j∈Z exp(−j2/2). Compute all the moments of the random variable Z = exp(W ). Do

these satisfy Carleman’s condition?

Exercise 10.3. a) Let X ∼ N (0, σ2) with σ > 0 and f ∈ C1(R) be such that ∃C > 0 and q > 0 such
that |f(x)|, |f ′(x)| ≤ C (1 + x2)q for all x ∈ R. Show that

E(Xf(X)) = σ2 E(f ′(X))

b) Use a) to deduce the value of E(X2k) for k ≥ 1. Do these moments satisfy Carleman’s condition?

c) Let Y ∼ P(λ) > 0 with λ > 0 and g : N → R be such that ∃C > 0 and q > 0 such that |g(k)| ≤
C (1 + k2)q for all k ∈ N. Show that

E(Y g(Y )) = λE(g(Y + 1))

d) Use c) to deduce the value of E(Y (Y − 1)(Y − 2) · · · (Y − p+ 1)) for p ≥ 1.

Exercise 10.4. (proof of the central limit theorem using moments)
Let (Xn, n ≥ 1) be a sequence of i.i.d. square-integrable random variables such that

E(X1) = 0 and E(X2
1 ) = 1

Let Sn =
∑n
j=1Xj . The central limit theorem asserts that Sn√

n

d→ Z as n→∞, where Z ∼ N (0, 1).

Prove this theorem using moments, under the following stronger assumptions:

a) X1 is a bounded random variable (so all moments exist).

b) E(X2k+1
1 ) = 0, for all k ≥ 0.

Hint: For the even moments, use the multinomial expansion

(x1 + ...+ xn)2k =
∑

j1,...jn≥0
j1+...+jn=2k

(
2k

j1, ..., jn

)
xj11 · · ·xjnn

and divide the sum into two parts as follows:
∑

j1,...jn≥0
j1+...+jn=2k

=
∑
j1,...jn∈{0,2}
j1+...+jn=2k

+
∑
∃1≤i≤n : ji /∈{0,2}

j1+...+jn=2k

.
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11 Concentration inequalities

Exercise 11.1. Regarding the “balls into bins” problem, let us define S
(m)
j to be the number of balls

having landed in bin j ∈ {1, . . . , n} after m throws (with all balls landing independently and uniformly
in one of the n bins).

a) Using Chebyshev’s inequality with ψ(x) = exp(sx) and optimizing over s > 0, find an upper bound on

P({S(m)
1 ≥ k}) for n large, m = λn and k > λ

with λ > 0 a fixed parameter.

Hint: At some point, you may use the inequality 1 + x ≤ ex, valid for x ∈ R, in order to get a nice
expression for the upper bound.

b) Let now S(m) = max{S(m)
1 , . . . , S

(m)
n } (considering still m = λn). Show that

P({S(m) > log(n)}) = O

(
1

n2

)
Exercise 11.2. Let (Xn, n ≥ 1) be a sequence of i.i.d. E(λ) random variables defined on a common
probability space (Ω,F ,P), i.e., X1 admits the following pdf:

pX1(x) =

{
λ exp(−λx) x ≥ 0

0 x < 0

Let also Sn = X1 + . . .+Xn. Using the large deviations principle, find a tight upper bound on

P ({Sn ≥ nt}) for t > E(X1) =
1

λ

as well as a tight upper bound on

P ({Sn ≤ nt}) for t < E(X1) =
1

λ

Watch out that there is a slight asymmetry between the two problems!

Exercise 11.3. Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables such that

P({X1 = +1}) = P({X1 = −1}) =
1

2

Let also Sn = X1 + . . . + Xn for n ≥ 1. For a fixed value of n, draw on the same graph the following
functions:

f(t) = − 1

n
logP({Sn > nt})

g(t) = Λ∗(t) = max
s∈R

(st− Λ(s)) where Λ(s) = logE(esX1)

h(t) = t2/2

NB: On these plots, t ∈ [0,+1].

In order to draw the function f(t), you should use Monte-Carlo simulation, that is, draw i.i.d. samples

X
(m)
1 , . . . , X

(m)
n for m = 1, . . . ,M (with M reasonably large) and approximate f(t) as

f(t) ' − 1

n
log

(
1

M
]{1 ≤ m ≤M : S(m)

n > nt}
)

As you will see, considering even moderate values of n requires considering quite large values of M .
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Exercise 11.4. Let (Xn, n ≥ 1) be a sequence of i.i.d. N (0, 1) random variables defined on a common
probability space (Ω,F ,P). Let also Sn = X1 + . . .+Xn. Find the exact value of

P ({Sn ≥ nt}) , for t > 0.

Exercise 11.5. For this exercise, you will need a generalization of the Cauchy-Schwartz inequality:
Hölder’s inequality (written here in a slightly unsual form to help you with the exercise). This inequality
says that if X, Y are two integrable random variables, then for every α ∈ [0, 1],

E
(
|X|α |Y |1−α

)
≤ E(|X|)α E(|Y |)1−α.

Preliminary: show that for α = 1/2, this is nothing but Cauchy-Schwarz’ inequality.

Let now X be a random variable such that E(exp(sX)) <∞ for every s ∈ R.

a) Show that the function Λ(s) = log(E(exp(sX)) is convex.

b) Show that the function Λ∗(t) = sups∈R(st− Λ(s)) is also convex.

12 Conditional expectation

Exercise 12.1. Let (Ω,F ,P) be a probability space, X be an square-integrable random variable defined
on this space and let G be a sub-σ-field of F . Relying only on the definition of conditional expectation,
show the following properties:

a) E(E(X|G)) = E(X).

b) If X is independent of G, then E(X|G) = E(X) a.s.

c) If X is G-measurable, then E(X|G) = X a.s.

d) If Y is G-measurable and bounded, then E(XY |G) = E(X|G)Y a.s.

e) If H is a sub-σ-field of G, then E(E(X|H)|G) = E(X|H) = E(E(X|G)|H) a.s.

Hint for parts b) to e): According to the course definition, in order to check that some candidate random
variable Z is the conditional expectation of X given G, you should check the following two conditions:

(i) Z ∈ G, i.e., Z is G-measurable and square-integrable;

(ii) Z satisfies E((Z −X)U) = 0 for every U ∈ G.

Exercise 12.2. Let X be a random variable such that P({X = +1}) = P({X = −1}) = 1
2 and

Z ∼ N (0, 1) be independent of X. Let also a > 0 and Y = aX + Z. We propose below four possible
estimators of the variable X given the noisy observation Y :

X̂1 =
Y

a
X̂2 =

aY

a2 + 1
X̂3 = sign(aY ) X̂4 = tanh(aY )

a) Which estimator among these four minimizes the mean square error (MSE) E((X̂ −X)2)?

In order to answer the question, draw on the same graph the four curves representing the MSE as a
function of a > 0. For this, you may use either the exact mathematical expression of the MSE or the one
obtained via Monte-Carlo simulations.

b) Provide a theoretical justification for your conclusion.

c) For which of the four estimators above does it hold that E((X̂ −X)2) = E(X2)− E(X̂2)?
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Exercise 12.3. Let X, Y be two discrete random variables (with values in a countable set D). Let us
moreover assume that X is integrable.

a) Show that the random variable ψ(Y ), where ψ is defined as

ψ(y) =
∑
x∈D

x P({X = x}|{Y = y})

matches the theoretical definition of conditional expectation E(X|Y ).

b) Application: One rolls two independent and balanced dice (say Y and Z), each with four faces. What
is the conditional expectation of the maximum of the two, given the value of one of them?

Exercise 12.4. (particular case of a proposition seen in the course)
Let X, Y be two independent discrete random variables and ϕ : R2 → R be a Borel-measurable function
such that E(|ϕ(X,Y )|) <∞.

a) Show that
E(ϕ(X,Y )|Y ) = ψ(Y ), where ψ(y) = E(ϕ(X, y)).

b) Reconsider the application of the previous exercise with this formula.

Exercise 12.5. (Borel’s paradox)
Let Z be a two-dimensional random variable uniformly distributed on the unit disc B(0, 1) in R2. Z has
two possible representations:

(i) Z = (X,Y ), where X ∈ [−1, 1] and Y ∈ [−1, 1] are the horizontal and vertical coordinates of Z
respectively, with joint pdf

fX,Y (x, y) =
1

π
1x2+y2≤1.

(ii) Z = (R,Θ), where R ∈ [0, 1] is the radius of Z and Θ ∈] − π, π] is its angle with respect to the
horizontal axis. Their joint pdf is given by

fR,Θ(r, θ) =
1

π
r 10≤r≤1 1−π<θ≤π,

where the factor r comes from the Jacobian of the change of coordinates.

a) For t ∈ [0, 1], compute limε→0 P({0 < X ≤ t}|{X ≥ 0,−ε < Y < ε}).

b) For t ∈ [0, 1], compute limε→0 P({0 < R ≤ t}|{−ε < Θ < ε}).

c) What is the paradox here? Can you resolve it?

13 Martingales and stopping times

Exercise 13.1. Let (Mn, n ∈ N) be a submartingale with respect to a filtration (Fn, n ∈ N) and
ϕ : R→ R be a Borel-measurable and convex function such that E(ϕ(Mn)2) < +∞, ∀n ∈ N.

a) What additional property of ϕ ensures that the process (ϕ(Mn), n ∈ N) is also a submartingale?

b) In particular, which of the following two processes is ensured to be a submartingale: (M2
n, n ∈ N)

and/or (exp(Mn), n ∈ N)?

Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables such P({X1 = +1}) = P({X1 = −1}) = 1
2 ; let

S0 = 0 and Sn = X1 + . . .+Xn for n ≥ 1; finally, let F0 = {∅,Ω} and Fn = σ(X1, . . . , Xn) for n ≥ 1.
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c) For which value of c > 0 is the process (S2
n− cn, n ∈ N) is a square-integrable martingale with respect

to (Fn, n ∈ N)?

d) For which value of c > 0 is the process
(

exp(Sn)
cn , n ∈ N

)
a square-integrable martingale with respect

to (Fn, n ∈ N)?

Assume now that P({X1 = +1}) = p = 1− P({X1 = −1}) for some 0 < p < 1 with p 6= 1
2 .

e) Does there exist a number c > 0 such that the process (S2
n−cn, n ∈ N) is a square-integrable martingale

with respect to (Fn, n ∈ N)? If yes, compute the value of c; otherwise, justify why it is not the case.

f) Does there exist a number c > 0 such that the process
(

exp(Sn)
cn , n ∈ N

)
is a square-integrable mar-

tingale with respect to (Fn, n ∈ N)? If yes, compute the value of c; otherwise, justify why it is not the case.

Exercise 13.2. Let 0 < p < 1 and x > 0 be fixed real numbers and (Xn, n ∈ N) be the process defined
recursively as

X0 = x, Xn+1 =

{
X2
n + 1 with probability p

Xn/2 with probability 1− p
for n ∈ N

a) What minimal condition on 0 < p < 1 guarantees that the process X is a submartingale (with respect
to its natural filtration)? Justify your answer.

Hint: The inequality a2 + b2 ≥ 2ab may be useful here.

b) For the values of p respecting the condition found in part a), derive a lower bound on E(Xn).

Hint: Proceed recursively.

c) Does there exist a value of 0 < p < 1 such that the process X is a martingale? a supermartingale?
Again, justify your answer.

Exercise 13.3. Part I. Let (Xn, n ≥ 1) be a sequence of i.i.d. centered and bounded random variables;
let (Fn, n ≥ 1) be the filtration defined as Fn = σ(X1, . . . , Xn), n ≥ 1. Among the following processes
(Yn, n ≥ 1), which are martingales with respect to (Fn, n ≥ 1)? (just a short justification suffices here)

a) Yn = Xn, n ≥ 1.

b) Y1 = X1, Yn+1 = a Yn +Xn+1, n ≥ 1 (a > 0 fixed).

c) Y1 = X1, Yn+1 = Xn +Xn+1, n ≥ 1.

d) Yn = max(X1, . . . , Xn), n ≥ 1.

e) Y1 = X1, Yn =
∑n
i=1(X1 + . . .+Xi−1)Xi, n ≥ 1.

Part II. Let now (Sn, n ∈ N) be the symmetric random walk and (Fn, n ∈ N) be its natural filtration.
Among the following random times, which are stopping times with respect to (Fn, n ∈ N)? which are
bounded? (no justification required here)

a) T = sup{n ≥ 0 : Sn ≥ a} (a > 0 is fixed)

b) T = inf{n ≥ 1 : Sn = max0≤k≤n Sk}

c) T = inf{n ≥ 0 : Sn = max0≤m≤N Sm} (N ≥ 1 is fixed)

d) T = inf{n ≥ 0 : Sn ≥ a or n ≥ N} (a > 0 and N ≥ 1 are fixed)

e) T = inf{n ≥ 0 : |Sn| ≥ a} (a > 0 is fixed)
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Exercise 13.4. a) Let (Mn, n ∈ N) be an non-decreasing martingale, that is, Mn+1 ≥ Mn a.s. for all
n ∈ N. Show that Mn = M0 a.s., for all n ∈ N.

b) Let (Mn, n ∈ N) be a square-integrable martingale such that (M2
n, n ∈ N) is also a martingale. Show

that Mn = M0 a.s., for all n ∈ N.

Exercise 13.5. Let (Xn, n ≥ 1) be a family of independent square-integrable random variables such
that E(Xn) = 0 for all n ≥ 1. Let M0 = 0, Mn = X1 + . . .+Xn, n ≥ 1.

The process (Mn, n ∈ N) is a martingale, but it is also a process with independent increments. Show
that (M2

n − E(M2
n), n ∈ N) is also a martingale (hence the process A in the Doob decomposition of the

submartingale (M2
n, n ∈ N) is a deterministic process in this case).

Exercise 13.6. (“The” martingale)
A player bets on a sequence of i.i.d. (and balanced) coin tosses: at each turn, the player wins twice his
bet if the coin falls on “heads” or loses his bet if the coin falls on “tails”.

Assume now that the player adopts the following strategy: he starts by betting 1 franc. If he wins his
bet (that is, if the outcome is “heads”), he quits the game and does not bet anymore. If he loses (that
is, if the outcome is “tails”), he plays again and doubles his bet for the next turn. He then goes on with
the same strategy for the rest of the game.

We assume here that the player can borrow any money he wants in order to bet. Of course, we also
assume that he has no information on the outcome of the next coin toss while betting on it.

a) Is the process of gains of the player a martingale (by convention, we set the gain of the player at time
zero to be equal to zero)?

b) What is the gain of the player at the first time “heads” comes out?

c) Isn’t there a contradiction between a) and b)?

Exercise 13.7. Let (Sn, n ∈ N) be the simple symmetric random walk on Z and (Fn, n ∈ N) be its
natural filtration.

a) Is the process (S4
n, n ∈ N) a submartingale with respect to (Fn, n ∈ N)? Justify your answer.

b) Is the process (S4
n − n, n ∈ N) a submartingale with respect to (Fn, n ∈ N)? Justify your answer.

Hint: Recall that (x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

c) Show that E(S4
n+1) = E(S4

n) + 6n+ 1 and deduce the value of E(S4
n) by induction on n.

Hint: Recall that
∑n−1
i=1 i = n(n−1)

2 .

d) Compute lim
n→∞

E(S4
n)

n2
. Can you make a parallel with something you already know?

Exercise 13.8. (if one cannot win on a game, then it is a martingale)
Let (Fn, n ∈ N) be a filtration and (Mn, n ∈ N) be a process adapted to (Fn, n ∈ N) such that
E(|Mn|) <∞, for all n ∈ N.

Show that if for any predictable process (Hn, n ∈ N) such that Hn is a bounded random variable ∀n ∈ N,
we have

E((H ·M)N ) = 0, ∀N ∈ N,

then (Mn, n ∈ N) is a martingale with respect to (Fn, n ∈ N).
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Exercise 13.9. Let (Sn, n ∈ N) be the simple symmetric random walk, (Fn, n ∈ N) be its natural
filtration and

T = inf{n ≥ 1 : |Sn| ≥ a},

where a ≥ 1 is an integer number.

a) Show that T is a stopping time with respect to (Fn, n ∈ N).

Let now (Mn, n ∈ N) be defined as Mn = S2
n − n, for all n ∈ N.

b) Show that the process (Mn, n ∈ N) is a martingale with respect to (Fn, n ∈ N).

c) Apply the optional stopping theorem to compute E(T ).

Remark: Even though T is an unbounded stopping time, the optional stopping theorem applies here.
Notice that the theorem would not apply if one would consider the following stopping time:

T ′ = inf{n ≥ 1 : Sn ≥ a}.

14 Martingale convergence theorems

Exercise 14.1. Part I. Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables such that P({Xn =
+1}) = p and P({Xn = −1}) = 1− p for some fixed 0 < p < 1/2.

Let S0 = 0 and Sn = X1 + . . .+Xn, n ≥ 1. Let also F0 = {∅,Ω} and Fn = σ(X1, . . . , Xn), n ≥ 1.

Let now (Yn, n ∈ N) be the process defined as Yn = λSn for some λ > 0 and n ∈ N.

a) Using Jensen’s inequality only, for what values of λ can you conclude that the process Y is a sub-
martingale with respect to (Fn, n ∈ N)?

b) Identify now the values of λ > 0 for which it holds that the process (Yn = λSn , n ∈ N) is a martingale
/ submartingale / supermartingale with respect to (Fn, n ∈ N).

c) Compute E(|Yn|) and E(Y 2
n ) for every n ∈ N (and every λ > 0).

d) For what values of λ > 0 does it hold that supn∈N E(|Yn|) < +∞? supn∈N E(Y 2
n ) < +∞?

e) Run the process Y numerically. For what values of λ > 0 do you observe that there exists a random
variable Y∞ such that Yn →

n→∞
Y∞ a.s.? Justify why this is the case and compute the random variable

Y∞ when it exists (this computation might depend on λ, of course).

f) For what values of λ > 0 does it hold that Yn
L1

→
n→∞

Y∞?

g) Finally, for what values of λ > 0 does it hold that E(Y∞|Fn) = Yn, ∀n ∈ N?
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Part II. Consider now the (interesting) value λ for which the process Y is a martingale.
(Spoiler: there is a unique such value of λ, and it is greater than 1.)

Let a ≥ 1 be an integer and consider the stopping time Ta = inf{n ∈ N : Yn ≥ λa or Yn ≤ λ−a}.

a) Estimate numerically P({YTa = λa}) for some values of a. Explain your method.

b) Is it true that E(YTa) = E(Y0)? Justify your answer.

c) If possible, use the previous statement to compute P = P({YTa = λa}) theoretically. How fast does
this probability decay with a?

Consider finally the other stopping time T ′a = inf{n ∈ N : Yn ≥ λa}.

d) Estimate numerically P({YT ′a = λa}) for some values of a. Explain your method.

e) Is it true that E(YT ′a) = E(Y0)? Justify your answer.

f) If possible, use the above statement to compute P ′ = P({YT ′a = λa}) theoretically. Is this probability
P ′ greater or smaller than P?

Exercise 14.2. Let 0 < p < 1 and M = (Mn, n ∈ N) be the process defined recursively as

M0 = x ∈ ]0, 1[, Mn+1 =


pMn, with probability 1−Mn

(1− p) + pMn, with probability Mn

and (Fn, n ∈ N) be the filtration defined as Fn = σ(M0, . . . ,Mn), n ∈ N.

a) For what value(s) of 0 < p < 1 is the process M is a martingale with respect to (Fn, n ∈ N)? Justify
your answer.

b) In the case(s) M is a martingale, compute E(Mn+1 (1−Mn+1) | Fn) for n ∈ N.

c) Deduce the value of E(Mn (1−Mn)) for n ∈ N.

d) Does there exist a random variable M∞ such that

(i) Mn →
n→∞

M∞ a.s. ? (ii) Mn
L2

→
n→∞

M∞ ? (iii) E(M∞|Fn) = Mn, ∀n ∈ N?

e) What can you say more about M∞? (No formal justification required here; an intuitive argument will
do.)

28



Exercise 14.3. Let (Ω,F ,P) be a probability space and G be a sub-σ-field of F . Let U ∼ U([−1,+1]) be
a random variable independent of G and M be a positive, integrable and G-measurable random variable.

a) Compute the function ψ : R+ → R satisfying

ψ(M) = E(|M + U | | G)

Let now (Un, n ≥ 1) be a sequence of i.i.d.∼ U([−1,+1]) random variables, all defined on (Ω,F ,P). Let
F0 = {∅,Ω} and Fn = σ(U1, . . . , Un), n ≥ 1. Let finally (Mn, n ≥ 1) be the process defined recursively
as

M0 = 0, Mn+1 = |Mn + Un+1|, n ∈ N

b) Show that the process (Mn, n ∈ N) is a submartingale with respect to (Fn, n ∈ N).

c) Is it true that the process (M2
n, n ∈ N) is also a submartingale with respect to (Fn, , n ∈ N)? Justify

your answer.

d) Determine the value of c > 0 such that the process (Nn = M2
n−cn, n ∈ N) is a martingale with respect

to (Fn, n ∈ N).

e) Does there exist a random variable M∞ such that Mn →
n→∞

M∞ almost surely? (Again, no formal

justification required here; an intuitive argument will do.)

Exercise 14.4. Let (an, n ≥ 1) be a decreasing sequence of positive numbers and (Xn, n ∈ N) be a
sequence of independent random variables such that

P({Xn = +an}) = P({Xn = −an}) =
1

2
∀n ≥ 1

Let also (Mn, n ∈ N) be the process defined as M0 = 0 and Mn =
∑n
j=1Xj for n ≥ 1.

a) Find a tight upper bound on
P({|Mn| ≥ nt})

Hint: For this, you may use the following (which is a small adaptation of what we have seen in the
course): if X is a random variable taking values +a and −a with probability 1/2, then

E(exp(sX)) =
esa + e−sa

2
= cosh(sa) ≤ exp(s2a2/2) ∀s ∈ R

b) Application: assume now that an = 1
n for n ≥ 1. Find the least value of α > 0 for which the upper

bound found in a) allows to conclude that

Mn

nα
→

n→∞
0 almost surely

c) Back to the general case: Considering the process M as a martingale (and letting (Fn, n ∈ N) be
its natural filtration), what condition on the decreasing sequence (an, n ≥ 1) ensures that there exists a
random variable M∞ such that

Mn →
n→∞

M∞ almost surely and E(M∞ | Fn) = Mn ∀n ∈ N?

d) Is there a simple condition on the decreasing sequence (an, n ≥ 1) ensuring only that

Mn →
n→∞

M∞ almost surely?

[Please pay attention: this question is a (big) trap!]

e) Which of the above two conditions is satisfied by the sequence an = 1/n?
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Exercise 14.5. Let (Sn, n ∈ N) be the simple symmetric random walk and (Fn, n ∈ N) be its natural
filtration. Let also α > 0 and (Mn, n ∈ N) be the process defined as

Mn = exp(Sn − αn), for n ∈ N

a) Determine the value of α > 0 such that M is a martingale with respect to (Fn, n ∈ N).

Let now a be a strictly positive integer and let

T = inf{n ≥ 1 : |Sn| ≥ a}

As seen in class, T is a stopping time with respect to (Fn, n ∈ N).

b) Apply the one of the versions of the optional stopping theorem (fully justifying its use) to compute
E(exp(−αT )).

Hint: For this part, you can take for granted the fact that ST and T are independent.

c) Let now T ′ be the stopping time defined as

T ′ = inf{n ≥ 1 : Sn ≥ a}

Can you apply the same procedure as above in order to compute the value of E(exp(−αT ′))?

Exercise 14.6. Let (Un, n ≥ 1) be a sequence of i.i.d. random variables, all uniform on [0, 1], and let
F0 = {∅,Ω}, Fn = σ(U1, . . . , Un), n ≥ 1. Let us also define the three processes

X0 = 1/2, Xn+1 =

{
1+Xn

2 , if Un+1 > Xn

Xn
2 , if Un+1 ≤ Xn

Y0 = 1/2, Yn+1 =

{
1+Yn

2 , if Un+1 ≤ Yn
Yn
2 , if Un+1 > Yn

and

Z0 = 1/2, Zn+1 =

{
1+Zn

2 , if Un+1 ≤ 1/2
Zn
2 , if Un+1 > 1/2

a) Are these three processes confined to some interval?

b) Compute E(Xn+1|Fn), E(Yn+1|Fn) and E(Zn+1|Fn).

c) Which of the three processes is a martingale with respect to (Fn, n ≥ 1)?

d) Is this martingale converging a.s. as n goes to infinity? To what limiting random variable? Run a
simulation in order to answer this question, then justify theoretically your answer.

e) Run a simulation to see what are the other two processes doing! Plot in particular (what you will see
is quite interesting. . . ):

e1) a trajectory of each process over 100 time slots;

e2) the histogram of all possible values taken by each process over 10’000 time slots.
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Exercise 14.7. Let Y = (Yn, n ∈ N) be the process defined recursively as

Y0 = 1, Yn+1 =


3Yn

2
, with probability 1/2

Yn
2
, with probability 1/2

a) Is the process Y a submartingale, supermartingale or martingale with respect to its natural filtration
(Fn, n ∈ N)? Justify your answer.

b) Compute E(Yn) and Var(Yn) recursively, for all n ≥ 1.

c) Is the process Y confined to some interval?

d) Does there exist a random variable Y∞ such that Yn →
n→∞

Y∞ almost surely?

e) If it exists, what is the random variable Y∞?

Hint: In order to answer this question rigorously, consider the process Z defined as Zn = log(Yn).

f) If Y∞ exists, does it also hold that Yn = E(Y∞|Fn)?

Exercise 14.8. Let (Mn, n ∈ N) be a square-integrable martingale with respect to some filtration
(Fn, n ∈ N) and (Hn, n ∈ N) be a predictable process with respect to (Fn, n ∈ N), such that |Hn(ω)| ≤
Kn for every ω ∈ Ω and n ∈ N.

Let also (Gn, n ∈ N) be the process defined as G0 = 0, Gn =
∑n
j=1Hj (Mj −Mj−1), n ≥ 1. By the

proposition seen in class, we know that G is a martingale.

a) Show that E(G2
n) =

∑n
j=1 E

(
H2
j (Aj −Aj−1)

)
, for every n ≥ 1, where (An, n ∈ N) is the (unique)

predictable and increasing process such that (M2
n −An, n ∈ N) is a martingale.

b) Consider M = S, the simple symmetric random walk. Find a sufficient condition on the process H
(other than H ≡ 0 :) such that there exists a random variable G∞ with E(G∞|Fn) = Gn, for every
n ∈ N.

c) Numerical application: still with M = S (i.e., Mn = Sn =
∑n
j=1Xj with Xj i.i.d. ±1 with equal

probability), observe numerically how does the process G behave when n→ +∞ with the following H’s
(which are all equal to 0 at time 0, by convention)

H(1)
n =

1

n
H(2)
n =

Xn−1

n
H(3)
n =

Xn−1√
n

H(4)
n =

Xn√
n

H(5)
n =

∑n−1
j=1 Xj

n

NB: One of these H’s is problematic!
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Exercise 14.9. Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables such that P({X1 = 1}) = 1/2
and P({X1 = −1}) = 1/2. Among the following martingales, which are the ones which are guaranteed
to converge a.s. to some limiting random variable as n goes to infinity? For each one, explain why it is
or it is not the case. When the martingale converges a.s., try describing the limiting random variable.

a) S0 = 0, Sn = X1 + . . .+Xn, n ≥ 1.

b) Mn = S2
n − n, n ≥ 0.

c) Let α > 0 be some fixed parameter; Mn = exp(αSn− c(α)n), n ≥ 0. In this example, you should first
compute what the function c(α) is, in order for M to be a martingale.

d) Let H be a predictable process such that |Hn(ω)| ≤ Kn for all n ≥ 1 and ω ∈ Ω and
∑
n≥0 E(H2

n) <∞.
Let M = (H · S) be the martingale transform defined as

M0 = 0, Mn = (H · S)n =

n∑
i=1

Hi (Si − Si−1), n ≥ 1.

Hint: In this example, you should first prove that

E((H · S)2
n) =

n∑
i=1

E(H2
i ), n ≥ 1.

For the following processes, first verify that they are indeed martingales.

e) Let a < 0 < b and T ′ = inf{n ≥ 0 : Sn ≤ a or Sn ≥ b}. Define then

Mn = Smin(T,n) =

{
Sn, if n < T,

ST , if n ≥ T.

f) Let now T ′ = inf{n ≥ 0 : Sn ≥ 1} and Mn = Smin(T ′,n).

g) Let (Fn, n ≥ 0) be a filtration and let X be an FN -measurable random variable, for some N > 0. Let

Mn = E(X|Fn), n ≥ 0.

How do the trajectories of this process look like?
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15 Five exercises sampled from former exams

Exercise 15.1. Let S = (Sn, n ∈ N) be the simple symmetric random walk. Let also (Xn, n ∈ N) be
the process defined as

X0 = S0 = 0, Xn = S1 + . . .+ Sn, n ≥ 1.

a) Compute E(Xn) and Var(Xn). How does Var(Xn) grow with n?

b) Fix s > 0. Compute an upper bound on E(exp(sXn)), for n ≥ 1.

Hint: You may use the inequality log(cosh(x)) ≤ x2/2.

c) Fix now t > 0 and deduce an upper bound on P(Xn ≥ n2t) which is tight for n large.

d) What can you deduce on the convergence of the sequence of random variables(
Yn =

Xn

n2
, n ≥ 1

)
?

Exercise 15.2. Let 0 < a < b < +∞ and (Xn, n ≥ 1) be a sequence of i.i.d. random variables all defined
on the same probability space (Ω,F ,P) and such that a ≤ Xn(ω) ≤ b for all n ≥ 1 and ω ∈ Ω.

a) Let µ = E(X1). Show that there exists ν ∈ R such that

1

n

n∑
j=1

(Xj − µ)3 →
n→∞

ν almost surely

b) Does it always hold that ν ≥ 0? If yes, prove it; if no, provide a counter-example.

c) Compute the values of µ and ν in the particular case where P({X1 = a}) = P({X1 = b}) = 1
2 .

d) Back to the general case now. Let (Zn, n ≥ 1) be the sequence of random variables defined as

Zn =
1√
n

n∑
j=1

(Xj − µ) for n ≥ 1

Show that there exists a random variable Z such that Zn
d→

n→∞
Z and compute the distribution of Z in

the particular case mentioned in part c).

e) In the general case, compute the value of E(Z3
n) for a fixed (arbitrary) value of n.

Exercise 15.3. a) Let X, Y be two i.i.d.∼ N (0, 1) random variables. Compute E(exp(sXY )) for s ≥ 0,
specifying for which values of s the expectation is well-defined and finite / well-defined but infinite /
ill-defined.

b) Let (Xn, n ≥ 1), (Yn, n ≥ 1) be two independent sequences of i.i.d.∼ N (0, 1) random variables, and
let Zn =

∑n
j=1XjYj for n ≥ 1. Let also t > 0 be fixed. Show that there exists c > 0 (possibly depending

on t) such that P({Zn > nt}) ≤ exp(−cn) for all n ≥ 1.

Hints:

- If X ∼ N (0, σ2), then E(exp(sX)) = exp(σ2s2/2) for every s > 0 and E(exp(sX2)) = 1√
1−2σ2s

for every

0 < s < 1
2σ2 .

- You do not need to compute the best value for the constant c > 0 in part b). Any value of c > 0 will
do, or even just providing a convincing argument that such a c > 0 exists is enough.
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Exercise 15.4. Let (Xn, n ≥ 1) be a sequence of random variables, each taking values in the set
{−1,+1}. Let also S0 = 0, Sn = X1 + . . . + Xn, n ≥ 1, and F0 = {∅,Ω}, Fn = σ(X1, . . . , Xn), n ≥ 1.
Assume now that for n ≥ 0,

P({Xn+1 = +1} |Fn) =
1

2
− Sn

2n
, P({Xn+1 = −1} |Fn) =

1

2
+
Sn
2n
.

a) Describe how the process (Sn, n ∈ N) behaves up to time n = 4.

b) Is the process (Sn, n ∈ N) a martingale with respect to (Fn, n ∈ N)? If yes, then prove it. If no, then
can you find a process closely related to (Sn, n ∈ N) which is a martingale with respect to (Fn, n ∈ N)?

c) Find a recursion formula for Var(Sn), and deduce from there what the value of Var(Sn) is for all values
of n ≥ 0.

d) Show that
Sn
n

P→
n→∞

0.

Hint: If you have not found the exact value of Var(Sn) in part c), you might still be able to deduce from
the recursion an upper bound on Var(Sn) that can help you solving part d).

Exercise 15.5. Let (Mn, n ∈ N) be a martingale with respect to a filtration (Fn, n ∈ N), such that

sup
n∈N

sup
ω∈Ω
|Mn(ω)| ≤ K, for some 0 < K < +∞

Let (An, n ∈ N) be the process defined recursively as

A0 = 0, An+1 = An + logE(exp(Mn+1 −Mn)|Fn)

a) Show that the process A is increasing.

b) Show that the process (Xn = exp(Mn −An), n ∈ N) is a martingale with respect to (Fn, n ∈ N).

Let nowM be the martingale defined recursively asM0 = x ∈ ]0, 1[, Mn+1 =

{
M2
n, with prob. 1

2

2Mn −M2
n, with prob. 1

2

and A,X be the processes defined above in this particular case.

c) Compute what the process A is in this particular case.

d) Does there exist a random variable X∞ such that E(X∞|Fn) = Xn for all n ∈ N? Explain!
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