
One Hundred Exercises: Solutions of the last five exercises
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Exercise 15.1 a) Sn =
∑n

j=1 ξj , so Xn =
∑n

j=1(n+ 1− j)ξj and

E(Xn) = 0 and Var(Xn) = E(X2
n) =

n∑
j=1

(n+ 1− j)2 =
n(n+ 1)(2n+ 1)

6
= Θ(n3)

b)

E(exp(sXn)) =

n∏
j=1

E(exp(s(n+ 1− j)ξj)) =

n∏
j=1

cosh(s(n+ 1− j)) ≤
n∏

j=1

exp

(
s2(n+ 1− j)2

2

)

= exp

(
s2

2

n∑
i=1

(n+ 1− j)2
)

= exp

(
s2 Var(Xn)

2

)
.

c) By Chebychev’s inequality,

P(Xn ≥ n2t) ≤
E(exp(sXn))

exp(sn2t)
≤ exp

(
Var(Xn)

2
s2 − n2ts

)
As s > 0 is a free parameter, we choose it so as to minimize

(
Var(Xn)

2 s2 − n2ts
)

, namely we choose

s∗ = n2t
Var(Xn)

. As such, we get

P(Xn ≥ n2t) ≤ exp

(
−1

2

n4t2

Var(Xn)

)
and similarly

P(Xn ≤ −n2t) = P(−Xn ≥ n2t) ≤ exp

(
−1

2

n4t2

Var(Xn)

)
d) For every t > 0, we have P(|Yn| ≥ t) = P(|Xn| ≥ n2t) ≤ 2 exp

(
− 1

2
n4t2

Var(Xn)

)
n→∞→ 0, since

Var(Xn) = Θ(n3). Also,
∑

n≥1 P(|Yn| ≥ t) < ∞, so by the Borel-Cantelli lemma, Yn converges al-
most surely to zero.

Exercise 15.2 a) The random variables Xj are i.i.d. and bounded, so the same holds for Yj = (Xj−µ)3,
and therefore, the strong law of large numbers applies:

1

n

n∑
j=1

(Xj − µ)3 →
n→∞

E((X1 − µ)3)(= ν) almost surely

b) No. Consider e.g. the case where P({X1 = a}) = p and P({X1 = b}) = 1− p, with 0 < p < 1. Then

ν = p (a− µ)3 + (1− p) (b− µ)3 = p (a− p a− (1− p) b)3 + (1− p) (b− p a− (1− p) b)3

= p (1− p)3 (a− b)2 + (1− p) p3 (b− a)3 = (−(1− p)2 + p2) p (1− p) (b− a)3

= (2p− 1) p (1− p) (b− a)3
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which is negative if p < 1
2 . [NB: Jensen’s does not apply here, as x 7→ x3 is not convex]

c)

µ =
a+ b

2
and ν =

1

2
(((a− b)/2)3 − ((b− a)/2)3) = 0

d) The random variables (Xj − µ) are i.i.d. and square-integrable, so the central limit theorem applies:

Zn
d→

n→∞
Z ∼ N (0, σ2), where

σ2 = Var(X1) = E((X1 − µ)2) =
1

2

(
((a− b)/2)2 + ((b− a)/2)2

)
=

(a− b)2

4

e)

E(Z3
n) =

1

n3/2

n∑
i,j,k=1

E((Xi − µ) (Xj − µ) (Xk − µ))

As E((Xi − µ) (Xj − µ) (Xk − µ)) = 0 as soon as i, j, k are not all equal (by independence and the fact
that E(Xj − µ) = 0 for all j), we obtain

E(Z3
n) =

1

n3/2

n∑
j=1

E((Xj − µ)3) =
1√
n
E((X1 − µ)3) =

ν√
n

Notice that this expression converges to 0 as n → ∞, which is coherent with the fact seen above that

Zn
d→

n→∞
Z ∼ N (0, σ2).

Exercise 15.3 a) First remark: as exp(sXY ) ≥ 0, E(exp(sXY )) is always well-defined, but possibly
equal to +∞. Now let us compute, using the hints:

E(exp(sXY )) = E(E(exp(sXY )|X)) = E(exp(s2X2/2)) =

{
1√

1−s2 when 0 ≤ s < 1

+∞ when s > 1

b) By the classical procedure, we have for every 0 ≤ s < 1:

P({Zn > nt}) ≤ e−snt E(exp(sZn)) = e−snt
n∏

j=1

E(exp(sXjYj)) = e−snt E(exp(sX1Y1))n

= exp(−snt+ n log(1/
√

1− s2)) = exp(−n(st+
1

2
log(1− s2)))

Therefore,

P({Zn > nt}) ≤ inf
0≤s<1

exp(−n(st+
1

2
log(1− s2))) = exp

(
−n sup

0≤s<1
(st+

1

2
log(1− s2))

)
To show that the above supremum is greater than 0, observe that for any t > 0, f(s) = st+ 1

2 log(1− s2)
satisfies

f(0) = 0 and f ′(0) = t > 0

so there always exists s > 0 and c = f(s) > 0 such that P({Zn > nt}) ≤ exp(−cn).
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Exercise 15.4 a) S0 = 0, S1 = ±1 wp 1/2, S2 = 0, S3 = ±1 wp 1/2, S4 =


+2 wp 1/6

0 wp 2/3

−2 wp 1/6

.

b) No:

E(Sn+1|Fn) = Sn + E(Xn+1|Fn) = Sn +

(
1

2
− Sn

2n

)
−
(

1

2
+
Sn

2n

)
= Sn −

Sn

n
=
n− 1

n
Sn

but the process M defined as Mn = (n− 1)Sn is a martingale, as the following shows:

E(Mn+1|Fn) = nE(Sn+1|Fn) = (n− 1)Sn = Mn

c) First note that by the above computation, E(Sn+1) = n−1
n E(Sn), and as S0 = 0, this implies that

E(Sn) = 0 for all n. Let us then compute

E(S2
n+1|Fn) = S2

n + 2Sn E(Xn+1|Fn) + E(X2
n+1|Fn) = S2

n + 2Sn

(
−Sn

n

)
+ 1 =

n− 2

n
S2
n + 1

so

Var(Sn+1) = E(S2
n+1) =

n− 2

n
E(S2

n) + 1 =
n− 2

n
Var(Sn) + 1

Looking at the first terms of this recursion (or using any other analysis), one finds that Var(S0) = 0,
Var(S1) = 1, Var(S2) = 0, Var(S3) = 1, Var(S4) = 4/3 (in accordance with what was found in part a),
and then Var(Sn) = n

3 for n ≥ 4; this can be checked directly with the above formula.

A simpler result can be obtained by observing that Var(Sn+1) ≤ Var(Sn)+1, for all n ≥ 0, so Var(Sn) ≤ n
for all n ≥ 0.

d) Since Var(Sn) = O(n) (cf. part c), we conclude by Chebyshev’s inequality that for any fixed ε > 0,

P({Sn/n ≥ ε}) ≤
E(S2

n)

n2ε2
=

Var(Sn)

n2ε2
= O

(
1

n

)
implying convergence in probability towards 0.

Exercise 15.5 a) By Jensen’s inequality, logE(exp(Mn+1 −Mn)|Fn) ≥ E(Mn+1 −Mn|Fn) = 0, so the
process A is increasing. By induction, we see that if An is Fn−1-measurable, then An+1 is Fn-measurable,
as logE(exp(Mn+1 −Mn)|Fn) is Fn-measurable by definition.

b) Observe first that E(|Xn|) = E(Xn) ≤ E(exp(Mn)) ≤ exp(1), as An ≥ 0 and Mn ≤ 1 for all n ∈ N.
Then we have

E(Xn+1|Fn) = E(exp(Mn+1)|Fn) exp(−An+1) = E(exp(Mn+1)|Fn) exp(−An)
1

E(exp(Mn+1 −Mn)|Fn)

= exp(Mn −An) = Xn

Let nowM be the martingale defined recursively asM0 = x ∈ ]0, 1[, Mn+1 =

{
M2

n, with prob. 1
2

2Mn −M2
n, with prob. 1

2

and A,X be the processes defined above in this particular case.

c) We have

An+1 −An = log

(
1

2
exp(M2

n −Mn) +
1

2
exp(2Mn −M2

n −Mn)

)
= log(cosh(Mn(1−Mn)))

so An =
∑n−1

j=0 log(cosh(Mj(1−Mj))).

d) We have seen above that 0 ≤ Xn ≤ exp(1) for all n ∈ N, so X is a bounded martingale and the first
version of the martingale convergence theorem applies. So yes, there exists a random variable X∞ such
that E(X∞|Fn) = Xn for all n ∈ N.
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