One Hundred Exercises: Solutions of the last five exercises

Olivier Lévêque, IC-LTHI, EPFL

June 24, 2021

Exercise 15.1 a) $S_{n}=\sum_{j=1}^{n} \xi_{j}$, so $X_{n}=\sum_{j=1}^{n}(n+1-j) \xi_{j}$ and

$$
\mathbb{E}\left(X_{n}\right)=0 \quad \text { and } \quad \operatorname{Var}\left(X_{n}\right)=\mathbb{E}\left(X_{n}^{2}\right)=\sum_{j=1}^{n}(n+1-j)^{2}=\frac{n(n+1)(2 n+1)}{6}=\Theta\left(n^{3}\right)
$$

b)

$$
\begin{aligned}
\mathbb{E}\left(\exp \left(s X_{n}\right)\right) & =\prod_{j=1}^{n} \mathbb{E}\left(\exp \left(s(n+1-j) \xi_{j}\right)\right)=\prod_{j=1}^{n} \cosh (s(n+1-j)) \leq \prod_{j=1}^{n} \exp \left(\frac{s^{2}(n+1-j)^{2}}{2}\right) \\
& =\exp \left(\frac{s^{2}}{2} \sum_{i=1}^{n}(n+1-j)^{2}\right)=\exp \left(\frac{s^{2} \operatorname{Var}\left(X_{n}\right)}{2}\right)
\end{aligned}
$$

c) By Chebychev's inequality,

$$
\mathbb{P}\left(X_{n} \geq n^{2} t\right) \leq \frac{\mathbb{E}\left(\exp \left(s X_{n}\right)\right)}{\exp \left(s n^{2} t\right)} \leq \exp \left(\frac{\operatorname{Var}\left(X_{n}\right)}{2} s^{2}-n^{2} t s\right)
$$

As $s>0$ is a free parameter, we choose it so as to minimize $\left(\frac{\operatorname{Var}\left(X_{n}\right)}{2} s^{2}-n^{2} t s\right)$, namely we choose $s^{*}=\frac{n^{2} t}{\operatorname{Var}\left(X_{n}\right)}$. As such, we get

$$
\mathbb{P}\left(X_{n} \geq n^{2} t\right) \leq \exp \left(-\frac{1}{2} \frac{n^{4} t^{2}}{\operatorname{Var}\left(X_{n}\right)}\right)
$$

and similarly

$$
\mathbb{P}\left(X_{n} \leq-n^{2} t\right)=\mathbb{P}\left(-X_{n} \geq n^{2} t\right) \leq \exp \left(-\frac{1}{2} \frac{n^{4} t^{2}}{\operatorname{Var}\left(X_{n}\right)}\right)
$$

d) For every $t>0$, we have $\mathbb{P}\left(\left|Y_{n}\right| \geq t\right)=\mathbb{P}\left(\left|X_{n}\right| \geq n^{2} t\right) \leq 2 \exp \left(-\frac{1}{2} \frac{n^{4} t^{2}}{\operatorname{Var}\left(X_{n}\right)}\right) \xrightarrow{n \rightarrow \infty} 0$, since $\operatorname{Var}\left(X_{n}\right)=\Theta\left(n^{3}\right)$. Also, $\sum_{n \geq 1} \mathbb{P}\left(\left|Y_{n}\right| \geq t\right)<\infty$, so by the Borel-Cantelli lemma, Y_{n} converges almost surely to zero.

Exercise 15.2 a) The random variables X_{j} are i.i.d. and bounded, so the same holds for $Y_{j}=\left(X_{j}-\mu\right)^{3}$, and therefore, the strong law of large numbers applies:

$$
\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-\mu\right)^{3} \underset{n \rightarrow \infty}{\rightarrow} \mathbb{E}\left(\left(X_{1}-\mu\right)^{3}\right)(=\nu) \quad \text { almost surely }
$$

b) No. Consider e.g. the case where $\mathbb{P}\left(\left\{X_{1}=a\right\}\right)=p$ and $\mathbb{P}\left(\left\{X_{1}=b\right\}\right)=1-p$, with $0<p<1$. Then

$$
\begin{aligned}
\nu & =p(a-\mu)^{3}+(1-p)(b-\mu)^{3}=p(a-p a-(1-p) b)^{3}+(1-p)(b-p a-(1-p) b)^{3} \\
& =p(1-p)^{3}(a-b)^{2}+(1-p) p^{3}(b-a)^{3}=\left(-(1-p)^{2}+p^{2}\right) p(1-p)(b-a)^{3} \\
& =(2 p-1) p(1-p)(b-a)^{3}
\end{aligned}
$$

which is negative if $p<\frac{1}{2}$. [NB: Jensen's does not apply here, as $x \mapsto x^{3}$ is not convex]
c)

$$
\mu=\frac{a+b}{2} \quad \text { and } \quad \nu=\frac{1}{2}\left(((a-b) / 2)^{3}-((b-a) / 2)^{3}\right)=0
$$

d) The random variables $\left(X_{j}-\mu\right)$ are i.i.d. and square-integrable, so the central limit theorem applies: $Z_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow{d}} Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$, where

$$
\sigma^{2}=\operatorname{Var}\left(X_{1}\right)=\mathbb{E}\left(\left(X_{1}-\mu\right)^{2}\right)=\frac{1}{2}\left(((a-b) / 2)^{2}+((b-a) / 2)^{2}\right)=\frac{(a-b)^{2}}{4}
$$

e)

$$
\mathbb{E}\left(Z_{n}^{3}\right)=\frac{1}{n^{3 / 2}} \sum_{i, j, k=1}^{n} \mathbb{E}\left(\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\left(X_{k}-\mu\right)\right)
$$

As $\mathbb{E}\left(\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\left(X_{k}-\mu\right)\right)=0$ as soon as i, j, k are not all equal (by independence and the fact that $\mathbb{E}\left(X_{j}-\mu\right)=0$ for all $\left.j\right)$, we obtain

$$
\mathbb{E}\left(Z_{n}^{3}\right)=\frac{1}{n^{3 / 2}} \sum_{j=1}^{n} \mathbb{E}\left(\left(X_{j}-\mu\right)^{3}\right)=\frac{1}{\sqrt{n}} \mathbb{E}\left(\left(X_{1}-\mu\right)^{3}\right)=\frac{\nu}{\sqrt{n}}
$$

Notice that this expression converges to 0 as $n \rightarrow \infty$, which is coherent with the fact seen above that $Z_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow{d}} Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Exercise 15.3 a) First remark: as $\exp (s X Y) \geq 0, \mathbb{E}(\exp (s X Y))$ is always well-defined, but possibly equal to $+\infty$. Now let us compute, using the hints:

$$
\mathbb{E}(\exp (s X Y))=\mathbb{E}(\mathbb{E}(\exp (s X Y) \mid X))=\mathbb{E}\left(\exp \left(s^{2} X^{2} / 2\right)\right)= \begin{cases}\frac{1}{\sqrt{1-s^{2}}} & \text { when } 0 \leq s<1 \\ +\infty & \text { when } s>1\end{cases}
$$

b) By the classical procedure, we have for every $0 \leq s<1$:

$$
\begin{aligned}
\mathbb{P}\left(\left\{Z_{n}>n t\right\}\right) & \leq e^{-s n t} \mathbb{E}\left(\exp \left(s Z_{n}\right)\right)=e^{-s n t} \prod_{j=1}^{n} \mathbb{E}\left(\exp \left(s X_{j} Y_{j}\right)\right)=e^{-s n t} \mathbb{E}\left(\exp \left(s X_{1} Y_{1}\right)\right)^{n} \\
& =\exp \left(-s n t+n \log \left(1 / \sqrt{1-s^{2}}\right)\right)=\exp \left(-n\left(s t+\frac{1}{2} \log \left(1-s^{2}\right)\right)\right)
\end{aligned}
$$

Therefore,

$$
\mathbb{P}\left(\left\{Z_{n}>n t\right\}\right) \leq \inf _{0 \leq s<1} \exp \left(-n\left(s t+\frac{1}{2} \log \left(1-s^{2}\right)\right)\right)=\exp \left(-n \sup _{0 \leq s<1}\left(s t+\frac{1}{2} \log \left(1-s^{2}\right)\right)\right)
$$

To show that the above supremum is greater than 0 , observe that for any $t>0, f(s)=s t+\frac{1}{2} \log \left(1-s^{2}\right)$ satisfies

$$
f(0)=0 \quad \text { and } \quad f^{\prime}(0)=t>0
$$

so there always exists $s>0$ and $c=f(s)>0$ such that $\mathbb{P}\left(\left\{Z_{n}>n t\right\}\right) \leq \exp (-c n)$.

Exercise 15.4 a) $S_{0}=0, S_{1}= \pm 1 \mathrm{wp} 1 / 2, S_{2}=0, S_{3}= \pm 1 \mathrm{wp} 1 / 2, S_{4}=\left\{\begin{array}{ll}+2 & \text { wp } 1 / 6 \\ 0 & \text { wp } 2 / 3 \\ -2 & \text { wp } 1 / 6\end{array}\right.$.
b) No:

$$
\mathbb{E}\left(S_{n+1} \mid \mathcal{F}_{n}\right)=S_{n}+\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=S_{n}+\left(\frac{1}{2}-\frac{S_{n}}{2 n}\right)-\left(\frac{1}{2}+\frac{S_{n}}{2 n}\right)=S_{n}-\frac{S_{n}}{n}=\frac{n-1}{n} S_{n}
$$

but the process M defined as $M_{n}=(n-1) S_{n}$ is a martingale, as the following shows:

$$
\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=n \mathbb{E}\left(S_{n+1} \mid \mathcal{F}_{n}\right)=(n-1) S_{n}=M_{n}
$$

c) First note that by the above computation, $\mathbb{E}\left(S_{n+1}\right)=\frac{n-1}{n} \mathbb{E}\left(S_{n}\right)$, and as $S_{0}=0$, this implies that $\mathbb{E}\left(S_{n}\right)=0$ for all n. Let us then compute

$$
\mathbb{E}\left(S_{n+1}^{2} \mid \mathcal{F}_{n}\right)=S_{n}^{2}+2 S_{n} \mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)+\mathbb{E}\left(X_{n+1}^{2} \mid \mathcal{F}_{n}\right)=S_{n}^{2}+2 S_{n}\left(-\frac{S_{n}}{n}\right)+1=\frac{n-2}{n} S_{n}^{2}+1
$$

so

$$
\operatorname{Var}\left(S_{n+1}\right)=\mathbb{E}\left(S_{n+1}^{2}\right)=\frac{n-2}{n} \mathbb{E}\left(S_{n}^{2}\right)+1=\frac{n-2}{n} \operatorname{Var}\left(S_{n}\right)+1
$$

Looking at the first terms of this recursion (or using any other analysis), one finds that $\operatorname{Var}\left(S_{0}\right)=0$, $\operatorname{Var}\left(S_{1}\right)=1, \operatorname{Var}\left(S_{2}\right)=0, \operatorname{Var}\left(S_{3}\right)=1, \operatorname{Var}\left(S_{4}\right)=4 / 3$ (in accordance with what was found in part a), and then $\operatorname{Var}\left(S_{n}\right)=\frac{n}{3}$ for $n \geq 4$; this can be checked directly with the above formula.
A simpler result can be obtained by observing that $\operatorname{Var}\left(S_{n+1}\right) \leq \operatorname{Var}\left(S_{n}\right)+1$, for all $n \geq 0$, so $\operatorname{Var}\left(S_{n}\right) \leq n$ for all $n \geq 0$.
d) Since $\operatorname{Var}\left(S_{n}\right)=O(n)$ (cf. part c), we conclude by Chebyshev's inequality that for any fixed $\varepsilon>0$,

$$
\mathbb{P}\left(\left\{S_{n} / n \geq \varepsilon\right\}\right) \leq \frac{\mathbb{E}\left(S_{n}^{2}\right)}{n^{2} \varepsilon^{2}}=\frac{\operatorname{Var}\left(S_{n}\right)}{n^{2} \varepsilon^{2}}=O\left(\frac{1}{n}\right)
$$

implying convergence in probability towards 0 .
Exercise 15.5 a) By Jensen's inequality, $\log \mathbb{E}\left(\exp \left(M_{n+1}-M_{n}\right) \mid \mathcal{F}_{n}\right) \geq \mathbb{E}\left(M_{n+1}-M_{n} \mid \mathcal{F}_{n}\right)=0$, so the process A is increasing. By induction, we see that if A_{n} is \mathcal{F}_{n-1}-measurable, then A_{n+1} is \mathcal{F}_{n}-measurable, as $\log \mathbb{E}\left(\exp \left(M_{n+1}-M_{n}\right) \mid \mathcal{F}_{n}\right)$ is \mathcal{F}_{n}-measurable by definition.
b) Observe first that $\mathbb{E}\left(\left|X_{n}\right|\right)=\mathbb{E}\left(X_{n}\right) \leq \mathbb{E}\left(\exp \left(M_{n}\right)\right) \leq \exp (1)$, as $A_{n} \geq 0$ and $M_{n} \leq 1$ for all $n \in \mathbb{N}$. Then we have

$$
\begin{aligned}
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right) & =\mathbb{E}\left(\exp \left(M_{n+1}\right) \mid \mathcal{F}_{n}\right) \exp \left(-A_{n+1}\right)=\mathbb{E}\left(\exp \left(M_{n+1}\right) \mid \mathcal{F}_{n}\right) \exp \left(-A_{n}\right) \frac{1}{\mathbb{E}\left(\exp \left(M_{n+1}-M_{n}\right) \mid \mathcal{F}_{n}\right)} \\
& =\exp \left(M_{n}-A_{n}\right)=X_{n}
\end{aligned}
$$

Let now M be the martingale defined recursively as $\left.M_{0}=x \in\right] 0,1\left[, M_{n+1}= \begin{cases}M_{n}^{2}, & \text { with prob. } \frac{1}{2} \\ 2 M_{n}-M_{n}^{2}, & \text { with prob. } \frac{1}{2}\end{cases}\right.$ and A, X be the processes defined above in this particular case.
c) We have

$$
A_{n+1}-A_{n}=\log \left(\frac{1}{2} \exp \left(M_{n}^{2}-M_{n}\right)+\frac{1}{2} \exp \left(2 M_{n}-M_{n}^{2}-M_{n}\right)\right)=\log \left(\cosh \left(M_{n}\left(1-M_{n}\right)\right)\right)
$$

so $A_{n}=\sum_{j=0}^{n-1} \log \left(\cosh \left(M_{j}\left(1-M_{j}\right)\right)\right)$.
d) We have seen above that $0 \leq X_{n} \leq \exp (1)$ for all $n \in \mathbb{N}$, so X is a bounded martingale and the first version of the martingale convergence theorem applies. So yes, there exists a random variable X_{∞} such that $\mathbb{E}\left(X_{\infty} \mid \mathcal{F}_{n}\right)=X_{n}$ for all $n \in \mathbb{N}$.

