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Exercise 15.1 a) S, = .7, &, 50 X, = 27 (n 41— j)§; and

E(X,) =0 and Var(X,)=EX2)=> (n+1-j)?= nn + 1)6(2” = _om?)

j=1

s?(n+1 —j)Q)

Blew(sX,)) = [ Blesp(sn+ 1)) = [Teosh(sta+1- ) < [Lexw (5

= exp (S; iz:(n +1 —j)2> = exp (SQW;W) .

c¢) By Chebychev’s inequality,
E X X
p(Xn > th) < M < exp ng — n2ts
exp(sn?t) 2

) . . Var(X
As s > 0 is a free parameter, we choose it so as to minimize ( ar(2 n) g2 thS), namely we choose

s* = WQX) As such, we get
1 n*?
P(X,, > n’t) < S
( > n7t) < exp ( 2Var(Xn))
and similarly
P(X, < —n’t) =P(-X, >n’*t) <e L't
n = = - n —_ — X T AN v
P\ 72 Var(x,)

d) For every ¢ > 0, we have P(|Y,] = P(|X,| > n%*) < 2exp (—%V(gzi )) "7 0, since

>t
Var(X,) = O(n3). Also, Y1 P(IYa] >t

most surely to zero.

) < 00, so by the Borel-Cantelli lemma, Y,, converges al-

Exercise 15.2 a) The random variables X are i.i.d. and bounded, so the same holds for Y; = (X; — )3,
and therefore, the strong law of large numbers applies:

1 n ) )
— g (X;—p)? — E((X1—p)?)(=v) almost surely
n

=1

n—oo

b) No. Consider e.g. the case where P({X; = a}) = p and P({X; =b}) =1 —p, with 0 < p < 1. Then
v=pla—p?’+1-p)(b-n’=pla-pa—(1-p)b)’>+(1-p)(b-pa—(1-p)b)°
=p(1=p°@=0*+1-p)p*(b—a)’ = (-(1-p)*+p*)p(1-p)(b-a)®
=2 -1)pQ1-p)(b-a)y



which is negative if p < % [NB: Jensen’s does not apply here, as z +— 2? is not convex]

c)
1
p="T and v= L(((a—0)/2) ~ (0 —a)/2) = 0
d) The random variables (X; — u) are i.i.d. and square-integrable, so the central limit theorem applies:
Zn % Z ~ N(0,0?%), where
2 2 1 2 2 (a —0)?
0? = Var(X1) = B((X1 = p)*) = 5 (e = )/2)° + (0 = a)/2)*) = ~—;

e)

As E(X; — p) (Xj — p) (X — p)) = 0 as soon as i, j, k are not all equal (by independence and the fact
that E(X; — p) = 0 for all j), we obtain

1< 1 v
B(Z3) = —75 Y B((X; — p)®) = —=E((X1 — p)?) = —=
( n) n3/2 pt (( J /14) ) \/’ﬁ (( 1 :U’) ) \/ﬁ
Notice that this expression converges to 0 as n — oo, which is coherent with the fact seen above that
Zn % Z~N(0,02).
n—roo

Exercise 15.3 a) First remark: as exp(sXY) > 0, E(exp(sXY)) is always well-defined, but possibly
equal to +00. Now let us compute, using the hints:

when 0 <s <1

E(exp(sXY)) = E(E(exp(sXY)|X)) = E(exp(s’X?/2)) = {4\{;07 when s > 1

b) By the classical procedure, we have for every 0 < s < 1:
n
P({Z, > nt}) < e """ E(exp(sZ,)) = e ™ H E(exp(sX;Y;)) = e " E(exp(sX1Y1))"
j=1

= exp(—snt + nlog(1/y/1 — s2)) = exp(—n(st + %log(l —5%)))

Therefore,

1 1
P({Z, >nt}) < inf exp(—n(st+ =log(l —s?))) =exp [ —n sup (st + = log(1 — s?))
0<s<1 2 0<s<1 2

To show that the above supremum is greater than 0, observe that for any ¢ > 0, f(s) = st + % log(1 — s?)
satisfies
f(0)=0 and f'(0)=t>0

so there always exists s > 0 and ¢ = f(s) > 0 such that P({Z,, > nt}) < exp(—cn).



+2 wp1/6
Exercise 15.4 a) Sy =0, 51 =+1wp 1/2, S5 =0,S3=x1wp1/2,S4a=70 wp2/3.

-2 wpl/6
b) No:
E n n) = Pn EXn n) = On 5 5. )] \5 5. ] =®n— —— = n
(Sn+41]Fn) = Sn + E(Xy 1| Fn) =S +<2 2n> <2+2n) S, - - S,

but the process M defined as M,, = (n — 1) S,, is a martingale, as the following shows:

c) First note that by the above computation, E(Sp+1) = -+ E(S,), and as Sy = 0, this implies that
E(S,) = 0 for all n. Let us then compute

-2
gy~

E(S2, 1| F) = S2 + 28, E(Xpp1|Fn) + E(X2, 1| Fn) = S2 + 28, (—if) +1=

SO
-2 -2
Var(Spy1) = E(S2,,) = —ZE(S3)+1= ”T Var(S,) + 1

Looking at the first terms of this recursion (or using any other analysis), one finds that Var(Sy) = 0,
Var(S1) = 1, Var(Sz) = 0, Var(S3) = 1, Var(Sy) = 4/3 (in accordance with what was found in part a),
and then Var(S,) = % for n > 4; this can be checked directly with the above formula.

A simpler result can be obtained by observing that Var(S,4+1) < Var(S,)+1, for alln > 0, so Var(S,) <n
for all n > 0.

d) Since Var(S,,) = O(n) (cf. part ¢), we conclude by Chebyshev’s inequality that for any fixed € > 0,

P({Sy/n > ¢}) < E(S2) _ Var(S,) _0 <1)

n2g? n2e? n

implying convergence in probability towards 0.

Exercise 15.5 a) By Jensen’s inequality, log E(exp(M+1 — My,)|Fy) > E(My41 — M, |F,) = 0, so the
process A is increasing. By induction, we see that if A,, is F,,_1-measurable, then A, ;1 is F,,-measurable,
as log E(exp(M,,+1 — My)|Fn) is F,-measurable by definition.
b) Observe first that E(|X,,|) = E(X,,) < E(exp(M,)) < exp(1), as A,, > 0 and M,, <1 for all n € N.
Then we have

1

E(Xn41]|Fn) = E(exp(My41)|Fn) exp(—Apt1) = E(exp(My11)|Fn) exp(—An) E(exp(Mpr1 — My)|Fn)

= eXp(Mn - An) =Xn

M2, with prob.

Let now M be the martingale defined recursively as My = x €]0,1[, My+1 = ) .
2M, — M7, with prob.

N~ Do~

and A, X be the processes defined above in this particular case.

¢) We have

Aps1 — Ay, =log <; exp(M? — M,,) + %exp(QMn — M2 - Mn)) = log(cosh(M, (1 — M,)))

so A, = Z;:Ol log(cosh(M;(1 — M;))).

d) We have seen above that 0 < X,, <exp(1) for all n € N, so X is a bounded martingale and the first
version of the martingale convergence theorem applies. So yes, there exists a random variable X, such
that E(X|F,) = X, for all n € N.



