Markov Chains and Algorithmic Applications: WEEK 9

1 Markov Chain Monte Carlo (MCMC) Sampling

The idea behind the MCMC method to obtain samples of a distribution π on S is to construct a Markov chain on S with transition matrix P having π as its stationary distribution. The samples of π are then obtained by iterating P long enough to reach the stationary distribution π , then sampling among the states of the Markov chain. The advantage here is that a) we do not have to sample directly from π , and b) we do not even need to know everything about π , as we will see below.

For practical reasons, we want P to have certain properties:

- 1. π should be the unique limiting distribution of P.
- 2. Convergence to the stationary distribution π should be fast, so as to obtain samples within a reasonable amount of time.

Example 1.1 (Graph Coloring). Let G = (V, E) be a graph with vertex set V and edge set E. We want to color each vertex of the graph with one of the q colors at our disposal such that a vertex's color differs from that of all its neighbors, as seen below:

More formally, let $x = (x_v, v \in V)$ be a particular color configuration of the vertex set V. A proper q-coloring of G is any configuration x such that $\forall v, w \in V$, if $(v, w) \in E$ then $x_v \neq x_w$.

If S represents the set of all possible color configurations, then the uniform distribution π over all proper q-colorings is given by

$$\pi(x) = \frac{1}{Z} \mathbb{1}\{x \text{ is a proper } q\text{-coloring}\}$$

where Z is the total number of proper q-colorings in G.

Computing Z would require enumerating all possible proper q-colorings which is non-trivial depending on G. Still, we would like to sample from π without computing Z explicitly.

1.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a procedure to construct a Markov chain on S having as limiting distribution π (for convenience, we assume that $\pi_i > 0$ for all $i \in S$). Here is the algorithm:

- 1. Select an easy-to-simulate irreducible and aperiodic Markov chain ψ on S with the constraint that $\psi_{ij} > 0$ if and only if $\psi_{ji} > 0$. We call ψ the base chain.
- 2. Design acceptance probabilities $a_{ij} = \mathbb{P}(\text{transition from } i \text{ to } j \text{ is accepted})$ such that the matrix P given below has limiting distribution π .
- 3. Construct the matrix P as such:

$$\begin{cases} p_{ij} = \psi_{ij} a_{ij}, & j \neq i \\ p_{ii} = \psi_{ii} + \sum_{k \neq i} \psi_{ik} (1 - a_{ik}) = 1 - \sum_{k \neq i} \psi_{ik} a_{ik} \end{cases}$$

In other words, we are adding self-loops of different weights to each state.

¹If S is finite, then these conditions imply positive-recurrence, hence ψ is ergodic and has a unique limiting distribution, but this limiting distribution is of no interest to the algorithm.

We must now choose the weights a_{ij} so that $p_{ij}(n) \xrightarrow[n \to \infty]{} \pi_j$. Moreover, we were able to upper-bound the mixing time of chains satisfying detailed balance in the previous lectures, so we would like P to satisfy this condition too: $\pi_i p_{ij} = \pi_j p_{ji}$

Theorem 1.2 (Metropolis-Hastings). If $a_{ij} = \min\left(1, \frac{\pi_j \psi_{ji}}{\pi_i \psi_{ij}}\right)$, then the matrix P constructed above is ergodic with stationary distribution π . Moreover, P satisfies detailed balance.

Proof. By assumption, ψ is irreducible and aperiodic, and $\forall i, j \in S, \psi_{ij} > 0$ iff $\psi_{ji} > 0$. So if $\psi_{ij} > 0$, then $a_{ij} > 0$ and $p_{ij} > 0$ also. Therefore, P is also irreducible and aperiodic. We then have

$$\pi_i p_{ij} = \pi_i \psi_{ij} a_{ij} = \pi_i \psi_{ij} \min \left(1, \frac{\pi_j \psi_{ji}}{\pi_i \psi_{ij}} \right) = \min \left(\pi_i \psi_{ij}, \pi_j \psi_{ji} \right)$$

whose expression is symmetric in i, j. It is therefore also equal to $\pi_j p_{ji}$: detailed balance holds and P has π as stationary distribution.

Finally, since P is irreducible and has a stationary distribution π , then by a previously seen theorem, P must be positive-recurrent and π must be unique. therefore P is ergodic and π is also a limiting distribution.

Remark 1.3. If $\psi_{ij} = \psi_{ji}$, then the expression for a_{ij} simplifies to $a_{ij} = \min\left(1, \frac{\pi_j}{\pi_i}\right)$.

The intuition behind choosing a_{ij} as such is the following: if $\pi_j > \pi_i$ the transition $i \to j$ should be taken with probability 1 since the chain is heading towards the more probable state j. However if $\pi_j < \pi_i$, then the move $i \to j$ should be taken with probability $\frac{\pi_j}{\pi_i} < 1$. In other words, the chain should tend towards the states having high probability, but it should be able to return to less probable states in order not to get stuck in a state that locally maximizes π .

Remark 1.4. The advantage of the Metropolis-Hastings algorithm is that the acceptance probabilities a_{ij} depend on π only through the ratios $\frac{\pi_j}{\pi_i}$, which can be significantly easier to compute than π_i and π_j separately! In the graph coloring example given previously, $\frac{\pi_j}{\pi_i} = \frac{1\{j \text{ is a proper } q\text{-coloring}\}}{1\{i \text{ is a proper } q\text{-coloring}\}}$, so we can avoid computing the expensive normalization constant Z entirely.

Example 1.5 (Metropolized Independent Sampling). To obtain samples of distribution π on S, we choose the base chain ψ such that $\psi_{ij} = \psi_j > 0 \ \forall i, j \in S$ (i.e. the process realizations are just sequences of i.i.d. random variables).

The acceptance probabilities are $a_{ij} = \min\left(1, \frac{w_j}{w_i}\right)$ with $w_i = \frac{\pi_i}{\psi_i}$, so the transition probabilities of P are given by

$$\begin{cases} p_{ij} &= \psi_{ij} a_{ij} = \psi_{j} \min\left(1, \frac{w_{j}}{w_{i}}\right), \quad j \neq i \\ p_{ii} &= 1 - \sum_{k \neq i} \psi_{ik} a_{ik} = 1 - \sum_{k \neq i} \psi_{k} \min\left(1, \frac{w_{k}}{w_{i}}\right) \end{cases}$$

In this particular example, one can show the following (no proof given here):

Theorem 1.6 (Liu). Let $\lambda_0 \geq \lambda_1 \geq \ldots \geq \lambda_{N-1}$ be the eigenvalues of P, and $\lambda_* = \max(\lambda_1, -\lambda_{N-1})$. Then

$$\lambda_* = 1 - \frac{1}{w_*}$$
, where $w_* = \max_{i \in S} \frac{\pi_i}{\psi_i} > 1$

Correspondingly, the spectral gap $\gamma = \frac{1}{w_*}$.

From the above and the previous lectures, we find that

$$||P_i^n - \pi||_{\text{TV}} \le \frac{\lambda_*^n}{2\sqrt{\pi_i}} \le \frac{1}{2\sqrt{\pi_i}} e^{-\gamma n} = \frac{1}{2\sqrt{\pi_i}} e^{-\frac{n}{w_*}}$$

Therefore, if w_* is large (i.e. if the distance between π and ψ is large), then convergence to the stationary distribution π is slow (this resembles the situation we already encountered with rejection sampling).