Problem Set 1 -Due Friday, September 30, before class starts For the Exercise Sessions on September 23

Last name	First name	SCIPER Nr	Points

Problem 1: Review of Random Variables

Let X and Y be discrete random variables defined on some probability space with a joint pmf $p_{X Y}(x, y)$. Let $a, b \in \mathbb{R}$ be fixed.
(a) Prove that $\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]$. Do not assume independence.
(b) Prove that if X and Y are independent random variables, then $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$.
(c) Assume that X and Y are not independent. Find an example where $\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$, and another example where $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$.
(d) Prove that if X and Y are independent, then they are also uncorrelated, i.e.,

$$
\begin{equation*}
\operatorname{Cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=0 \tag{1}
\end{equation*}
$$

(e) Find an example where X and Y are uncorrelated but dependent.
(f) Assume that X and Y are uncorrelated and let σ_{X}^{2} and σ_{Y}^{2} be the variances of X and Y, respectively. Find the variance of $a X+b Y$ and express it in terms of $\sigma_{X}^{2}, \sigma_{Y}^{2}, a, b$.
Hint: First show that $\operatorname{Cov}(X, Y)=\mathbb{E}[X \cdot Y]-\mathbb{E}[X] \cdot \mathbb{E}[Y]$.

Problem 2: Review of Gaussian Random Variables

A random variable X with probability density function

$$
\begin{equation*}
p_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} \tag{2}
\end{equation*}
$$

is called a Gaussian random variable.
(a) Explicitly calculate the mean $\mathbb{E}[X]$, the second moment $\mathbb{E}\left[X^{2}\right]$, and the variance $\operatorname{Var}[X]$ of the random variable X.
(b) Let us now consider events of the following kind:

$$
\begin{equation*}
\operatorname{Pr}(X<\alpha) . \tag{3}
\end{equation*}
$$

Unfortunately for Gaussian random variables this cannot be calculated in closed form. Instead, we will rewrite it in terms of the standard Q-function:

$$
\begin{equation*}
Q(x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u \tag{4}
\end{equation*}
$$

Express $\operatorname{Pr}(X<\alpha)$ in terms of the Q-function and the parameters m and σ^{2} of the Gaussian pdf.
Like we said, the Q-function cannot be calculated in closed form. Therefore, it is important to have bounds on the Q-function. In the next 3 subproblems, you derive the most important of these bounds, learning some very general and powerful tools along the way:
(c) Derive the Markov inequality, which says that for any non-negative random variable X and positive a, we have

$$
\begin{equation*}
\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a} \tag{5}
\end{equation*}
$$

(d) Use the Markov inequality to derive the Chernoff bound: the probability that a real random variable Z exceeds b is given by

$$
\begin{equation*}
\operatorname{Pr}(Z \geq b) \leq \mathbb{E}\left[e^{s(Z-b)}\right], \quad s \geq 0 \tag{6}
\end{equation*}
$$

(e) Use the Chernoff bound to show that

$$
\begin{equation*}
Q(x) \leq e^{-\frac{x^{2}}{2}} \quad \text { for } x \geq 0 \tag{7}
\end{equation*}
$$

Problem 3: Moment Generating Function

In the class we had considered the logarithmic moment generating function

$$
\phi(s):=\ln \mathbb{E}[\exp (s X)]=\ln \sum_{x} p(x) \exp (s x)
$$

of a real-valued random variable X taking values on a finite set, and showed that $\phi^{\prime}(s)=\mathbb{E}\left[X_{s}\right]$ where X_{s} is a random variable taking the same values as X but with probabilities $p_{s}(x):=p(x) \exp (s x) \exp (-\phi(s))$.
(a) Show that

$$
\phi^{\prime \prime}(s)=\operatorname{Var}\left(X_{s}\right):=\mathbb{E}\left[X_{s}^{2}\right]-\mathbb{E}\left[X_{s}\right]^{2}
$$

and conclude that $\phi^{\prime \prime}(s) \geq 0$ and the inequality is strict except when X is deterministic.
(b) Let $x_{\text {min }}:=\min \{x: p(x)>0\}$ and $x_{\max }:=\max \{x: p(x)>0\}$ be the smallest and largest values X takes. Show that

$$
\lim _{s \rightarrow-\infty} \phi^{\prime}(s)=x_{\min }, \quad \text { and } \quad \lim _{s \rightarrow \infty} \phi^{\prime}(s)=x_{\max } .
$$

Problem 4: Hoeffding's Lemma

Prove Lemma 2.3 in the lecture notes. In other words, prove that if X is a zero-mean random variable taking values in $[a, b]$ then

$$
\mathbb{E}\left[e^{\lambda X}\right] \leq e^{\frac{\lambda^{2}}{2}\left[(a-b)^{2} / 4\right]}
$$

Expressed differently, X is $\left[(a-b)^{2} / 4\right]$-subgaussian.
Hint: You can use the following steps to prove the lemma:

1. Let $\lambda>0$. Let X be a random variable such that $a \leq X \leq b$ and $\mathbb{E}[X]=0$. By considering the convex function $x \rightarrow e^{\lambda x}$, show that

$$
\begin{equation*}
\mathbb{E}\left[e^{\lambda X}\right] \leq \frac{b}{b-a} e^{\lambda a}-\frac{a}{b-a} e^{\lambda b} \tag{8}
\end{equation*}
$$

2. Let $p=-a /(b-a)$ and $h=\lambda(b-a)$. Verify that the right-hand side of (8) equals $e^{L(h)}$ where

$$
L(h)=-h p+\log \left(1-p+p e^{h}\right)
$$

3. By Taylor's theorem, there exists $\xi \in(0, h)$ such that

$$
L(h)=L(0)+h L^{\prime}(0)+\frac{h^{2}}{2} L^{\prime \prime}(\xi)
$$

Show that $L(h) \leq h^{2} / 8$ and hence $\mathbb{E}\left[e^{\lambda X}\right] \leq e^{\lambda^{2}(b-a)^{2} / 8}$.

Problem 5: Expected Maximum of Subgaussians

Let $\left\{X_{i}\right\}_{i=1}^{n}$ be a collection of $n \sigma^{2}$-subgaussian random variables, not necessarily independent of each other. Let $Y=\max _{i \in\{1,2, \cdots, n\}} X_{i}$. Prove that $\mathbb{E}[Y] \leq \sqrt{2 \sigma^{2} \log n}$. Hint: Recall that by Jensen, $e^{\lambda \mathbb{E}[X]} \leq \mathbb{E}\left[e^{\lambda X}\right]$.

