Série 3

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs) l'exercice (\star) et a rendre votre solution (eventuellement a plusieurs) avant le dimanche de la semaine suivante celle ou la serie a ete postee. Il faudra transmettre votre solution sur moodle, sous forme de fichier pdf (eventuellement tape en LaTeX) en suivant le lien a cet effet dans la semaine de la serie.

1 Morphismes de groupes

Exercice 1. (Equations dans les groupes). Soit (G, \star) , (H, \cdot) des groupes et

$$\varphi: G \mapsto H$$

un morphisme et $\ker(\varphi)$ son noyau. Etant donne $h \in H$, on cherche a resoudre l'equation d'inconnue $g \in G$:

$$Eq(\varphi, h): \qquad \varphi(q) = h.$$

L'ensemble des solutions de cette equation n'est autre que la preimage $\varphi^{(-1)}(\{h\})...$

1. Montrer que

$$\varphi^{(-1)}(\{h\})$$

est ou bien vide ou bien non vide ; dans ce dernier cas montrer qu'il existe $g_0 \in G$ tel que

$$\varphi^{(-1)}(\{h\}) = g_0 \star \ker(\varphi)$$

ou on a note

$$g_0 \star \ker(\varphi) = \{g_0 \star k, \ k \in \ker(\varphi)\}.$$

2. Montrer qu' on a egalement

$$\varphi^{(-1)}(\{h\}) = \ker(\varphi) \star g_0$$

avec

$$\ker(\varphi) \star g_0 = \{k \star g_0, \ k \in \ker(\varphi)\}.$$

Quel est l'ensemble de tous les $g_0 \in G$ ayant les proprietes

$$\varphi^{-1}(\lbrace h \rbrace) = g_0 \star \ker(\varphi) = \varphi^{-1}(\lbrace h \rbrace) = \ker(\varphi) \star g_0 ?$$

Cela vous rappelle t il quelque chose? (pensez a "equation avec" et "sans second membre", "solution particuliere", "solution generale" ...)

1.1 Conjugaison

Soit G un groupe et $g \in G$ un element, on rappelle que la conjugaison par g est l'automorphisme de G defini par

$$\mathrm{Ad}_g: \begin{matrix} G & \mapsto & G \\ g' & \mapsto & g.g'.g^{-1}. \end{matrix}$$

On rappelle qu'un sous groupe $K \subset G$ est distingue (ou normal) si

$$\forall g \in G, \ \mathrm{Ad}_g(K) = K$$

et on le note

$$K \triangleleft G$$
.

On a vu que le noyau $\ker \varphi$ d'un morphisme de groupes $\varphi: G \mapsto H$ est distingue.

Exercice 2. (Le centre d'un groupe) Soit (G, .) un groupe. Le centre de G est l'ensemble des elements de g qui commutent avec tous les elements de G

$$Z(G) = \{z \in G, \text{ pour tout } g \in G, z.g = g.z\}.$$

1. Montrer que

$$Z(G) = \ker \operatorname{Ad}_{\bullet}$$

ou

$$Ad_{\bullet}: G \mapsto Bij(G)$$

est l'action par conjugaison.

2. Montrer que Z(G) est un sous-groupe distingue de G et qu'il est commutatif.

Exercice 3 ((\star) sous-groupe des commutateurs). Soit (G, .) un groupe.

1. Soit $D \subset G$ un sous-groupe de G. On suppose que,

$$\forall k \in G, \operatorname{Ad}_k(D) \subset D.$$

Montrer que D est distingue dans G.

2. Le commutateur de deux elements $g, h \in G$ est l'element

$$[g,h] := g.h.g^{-1}.h^{-1}.$$

Le groupe derive de G est, par definition, le sous-groupe engendre par les commutateurs de G

$$D(G) = [G, G] = \langle \{[g, h], g, h \in G\} \rangle.$$

Que vaut D(G) si G est commutatif?

- 3. Montrer que pour tout $k \in G$, et $g, h \in G$, $Ad_k([g, h]) = [Ad_k(g), Ad_k(h)]$.
- 4. En deduire que $\forall k \in G$, $\mathrm{Ad}_k(D(G)) \subset D(G)$ et puis que $D(G) \triangleleft G$.
- 5. Soit (Z, \odot) un groupe commutatif et

$$\varphi: G \mapsto Z$$

un morphisme de groupes. Montrer que

$$D(G) \subset \ker(\varphi)$$
.

Pour cela on commencera par regarder ce qu'il en est des commutateurs.

1.2 Action d'un groupe sur un ensemble

Soit X un ensemble, G un groupe et soit $G \curvearrowright X$ une action a gauche de G sur X. On representera (comme on prefere) cette action, soit sous la forme d'un morphisme

$$\varphi: G \mapsto \operatorname{Bij}(X),$$

soit sous la forme d'une application $\odot:(g,x)\in G\times X\mapsto g\odot x\in X$ verifiant les proprietes convenables.

Exercice 4. Soit $x \in X$, la G-orbite de x est le sous-ensemble

$$G \odot x = \{g \odot x = \varphi(g)(x), g \in G\}.$$

On dit que x' est dans la G-orbite de x ssi

il existe
$$q \in G$$
, tel que $x' = \varphi(q)(x) = q \odot x$

ou en d'autre termes ssi

$$x' \in \varphi(G)(x) = G \odot x.$$

On note cette relation

$$x' \sim_G x$$

1. Montrer que la relation $x' \sim_G x$ est une relation d'equivalence et que les classes d'equivalence de cette relations sont les G-orbites de X (les sous-ensembles de la forme $G \odot x$ pour $x \in X$). En particulier les differentes G-orbites forment un partition de X

Ainsi la relation $x' \sim_G x$ peut se dire simplement "x et x' sont dans la meme G-orbite".

2. On considere le cas ou $X = \{1, 2, 3, 4, 5, 6, 7\}$, $G = \mathbb{Z}$ agissant sur X via la permutation de X donnée par

$$\sigma: 1 \to 3, 2 \to 7, 3 \to 5, 4 \to 6, 5 \to 1, 6 \to 4, 7 \to 2$$

et pour $n \in \mathbb{Z}$ et $x \in X$, on pose

$$n._{\sigma}x := \sigma^n(x).$$

Trouver la decomposition de X en orbites pour cette action (on notera qu'il suffit de considerer les $n \ge 0$) et exrire les differentes orbites sous la forme

$$\{x_0 = 0._{\sigma}(x_0), x_1 = 1._{\sigma}x_0, x_2 = 2._{\sigma}x_0, \cdots\}.$$

Exercice 5. Pour la notion d'action a droite, la notion suivante est utile

Définition 1. Soient (G, \star) et (H, \star) deux groupes, un anti-morphisme de groupes $\varphi : G \mapsto H$ est une application telle que

$$\forall g, g' \in G, \ \varphi(g \star g') = \varphi(g') \star \varphi(g).$$

- 1. Soit $\varphi: G \mapsto H$ une application, montrer que les proprietes suivantes sont equivalentes
 - (a) φ est un anti-morphisme,
 - (b) L'application

$$\varphi \circ \bullet^{-1} : g \in G \mapsto \varphi(g^{-1}) \in H$$

est un morphisme de groupes,

(c) L'application

$$\bullet^{-1} \circ \varphi : g \in G \mapsto \varphi(g)^{-1} \in H$$

est un morphisme de groupes.

En particulier appliquant cette equivalence a une action a droite $\varphi: G \mapsto \operatorname{Bij}(X)$ on obtient la definition equivalente d'action a droite :

Définition 2. Soit (G, \star) un groupe, X un ensemble et $(Bij(X), \circ)$ le groupe symetrique de X (des bijections de X sur lui-meme). Une action a droite de G sur X est la donnee d'un anti-morphisme de groupes

$$\varphi: G \mapsto \mathrm{Bij}(X)$$

ie. une application $\varphi: G \mapsto \operatorname{Bij}(X)$ telle que

$$\forall q, q' \in G, \ \varphi(q \star q') = \varphi(q') \circ \varphi(q).$$

On dit alors que G agit sur X a droite a travers φ et on le note $X \curvearrowright_{\varphi} G$.

Exercice 6 (Action a droite d'un groupe sur un ensemble). Soit (G, *) un groupe et Bij(X) le groupe des bijection d'un ensemble X.

1. Montrer que la donnee d'une action a droite $X \curvearrowleft_{\varphi} G$ est equivalente a la donnee d'une application

$$\bullet|\bullet: \begin{matrix} X\times G & \mapsto & X \\ (x,g) & \mapsto & x|g \end{matrix}$$

verifiant

- (a) trivialite de l'element neutre : $\forall x \in X, \ x | e_G = x$,
- (b) associativite: $\forall x \in X, \ g, g' \in G, \ x | (g \star g') = (x|g)|g'$ (on voit ainsi que dans une action a droite pour calculer l'action de $g \star g'$ sur x, on fait d'abord "agir" g sur x et ensuite on fait "agir" g' sur le resultat g|x alors que pour une action a gauche c'est g' qui agit en premier et ensuite g agit sur le resultat $g' \odot x$.)
- 2. Soit $\varphi: G \mapsto \operatorname{Bij}(X)$ une action a droite. On definit le noyau de cette action comme etant la preimage de Id_X :

$$\ker \varphi = \varphi^{(-1)}(\{\operatorname{Id}_X\}) = \{g \in G, \ \varphi(g) = \operatorname{Id}_X\}.$$

Montrer que $\ker \varphi$ est un sous-groupe distingue de G (attention φ n'est pas tout a fait un morphisme de groupes!).

Exercice 7. Soit X, Y des ensembles, $\mathcal{F}(X, Y)$ l'espace des fonctions (ie. des applications) de X a valeurs dans (ie. vers) Y; soit $G \curvearrowright_{\varphi} X$ un groupe agissant sur X a gauche (on ecrit $\varphi(g)(x) = g \odot x$).

1. Montrer que l'application

$$\bullet_{|\bullet}: \frac{(\mathcal{F}(X,Y),G)}{(f,g)} \mapsto \frac{\mathcal{F}(X,Y)}{f_{|g}}: x \mapsto f_{|g}(x) := f(\varphi(g)(x)) = f(g \odot x)$$

defini une action a droite de G sur $\mathcal{F}(X,Y)$.

2. Reciproquement, construire a partir d'une action a droite

$$X \curvearrowleft G : (x, q) \in X \times G \mapsto x | q \in X$$

de G sur X, une action a gauche $(g, f) \mapsto g \odot' f$ de G sur $\mathcal{F}(X, Y)$.

Exercice 8. Soit (G, .) un groupe et $g \in G$, un element; l'application de translation a gauche par g est l'application

$$t_g: \begin{matrix} G & \mapsto & G \\ g' & \mapsto & g.g' \end{matrix}.$$

1. On a vu que cela defini une action a gauche

$$t_{\bullet}: G \mapsto \mathrm{Bij}(G).$$

Montrer que t_{\bullet} est injective.

Remarque 1.1. Ainsi G est isomorphe a son image

$$t_G \subset \mathrm{Bij}(G)$$

(car t_{\bullet} est un morphisme injectif qui est tautologiquement surjectif sur son image) par un morphisme de groupe donc isomorphe au sous-groupe image.

Ce dernier est le groupe des translations a gauche de G. On a donc montre que tout groupe G est isomorphe a un sous-groupe d'un groupe de permutations (ici Bij(G)).

2 Premiers exercices sur les anneaux

Exercice 9. Soit A un anneau commutatif. Soit l'ensemble

$$M_2(A) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in A \right\}$$

des matrices 2×2 a coefficients dans A. On muni cet ensemble des lois d'addition et de multiplication des matrices

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa'+bc' & ab'+bd' \\ ca'+dc' & cb'+dd' \end{pmatrix}$$

1. Verifier que $M_2(A)$ est un annea d'element nul la matrice nulle

$$0_{2(A)} = \begin{pmatrix} 0_A & 0_A \\ 0_A & 0_A \end{pmatrix}$$

et d'unite la matrice identite

$$\mathrm{Id}_2 = \begin{pmatrix} 1_A & 0_A \\ 0_A & 1_A \end{pmatrix}.$$

- 2. Montrer que si A possede au moins deux elements distincts alors $M_2(A)$ n'est pas commutatif (on verra d'abord que dans ce cas $0_A \neq 1_A$).
- 3. A une matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(A)$ on associe son determinant

$$\det M = ad - bc \in A.$$

Que vaut $\det(\mathrm{Id}_2)$? Montrer que pour $M, N \in M_2(A)$

$$\det(M.N) = \det(M)\det(N).$$

- 4. Montrer que si M est inversible alors $\det(M) \in A^{\times}$ (ie. est inversible).
- 5. On va montrer la reciproque. On suppose que $\det(M) = ad bc \in A^{\times}$ (est inversible) et soit $(ad bc)^{-1}$ son inverse. Montrer qu'alors

$$M' = \begin{pmatrix} (ad - bc)^{-1}d & -(ad - bc)^{-1}b \\ -(ad - bc)^{-1}c & (ad - bc)^{-1}a \end{pmatrix}$$

est l'inverse de M. On peut donc ecrire $M' = M^{-1}$

6. On a donc montre que

$$M_2(A)^{\times} = \{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(A), \det M = ad - bc \in A^{\times} \}.$$

Montrer que l'application

$$M \in M_2(A)^{\times} \mapsto \det M \in A^{\times}$$

est un morphisme de groupes. Que vaut $\det(M^{-1})$? Le verifier par un calcul direct.

Exercice 10. Soit $(A, +, ., 0_A, 1_A)$ un anneau . On a dit qu'un element $a \in A$ est inversible a gauche (resp. a droite) si il existe $b \in A$ (resp. $c \in A$) tel que

$$b.a = 1_A \ (resp. \ a.c = 1_A).$$

On dit que b est un inverse a gauche (resp. c est un inverse a droite)

1. On suppose que a est inversible a gauche ET inversible a droite (avec des inverses a gauche et a droite notes respectivement b et c). Montrer qu'alors

$$b = c$$

de sorte que a est inversible au sens du cours (les inverses a droite et a gauche etant les memes). On a alors vu que l'inverse est uniquement defini.

2. On va maintenant donner un exemple d'un anneau possedant un element inversible a gauche mais qui n'est pas inversible a droite. Soit $\mathcal{F}(\mathbb{Z},\mathbb{Z})$ l'ensemble des fonctions (toutes les fonctions, par seulement les morphismes de groupes) de \mathbb{Z} sur \mathbb{Z} . Alors avec l'addition et la composition des fonctions, on obtient un anneau

$$(\mathcal{F}(\mathbb{Z},\mathbb{Z}),+,\circ,\underline{0},\mathrm{Id}_{\mathbb{Z}})$$

(a) On considere la fonction de doublement

$$D: \begin{array}{ccc} \mathbb{Z} & \mapsto & \mathbb{Z} \\ n & \mapsto & D(n) = 2n \end{array}$$

Soit $[\bullet]$: $\mathbb{R} \to \mathbb{Z}$ la fonction partie entiere ([x] est le plus grand entier inferieur ou egal a x). Montrer que la fonction

$$H:=[\frac{\bullet}{2}]:n\in\mathbb{Z}\mapsto [\frac{n}{2}]\in\mathbb{Z}$$

est un inverse a gauche de D

(b) Montrer que D n'admet pas d'inverse a droite : il n'existe pas de $H': \mathbb{Z} \mapsto \mathbb{Z}$ telle que

$$D \circ H' = \mathrm{Id}_{\mathbb{Z}}.$$