
Cryptographic tools for
decentralized systems

CS-438: Decentralized Systems Engineering

(slide credits: Haoqian Zhang, Kirill Nikitin, Dusan Kostic, Cristina Basescu, Bryan Ford)

Alice sends a message to Bob...

Secrecy? Integrity? Authenticity?

Share a secret with multiple parties but trust no individual (Byzantine attacker model)

Threshold secret sharing

Introduction

● What is cryptography?
○ A toolbox for many security mechanisms
○ Information security and communication security
○ Secure data at rest and data in motion

● Cryptography is not:
○ The solution to all security problems
○ Reliable unless implemented properly
○ Reliable unless used properly
○ Something you should try to invent yourself

3
Credit: https://crypto.stanford.edu/cs155/lectures/07-crypto.pdf

Outline

● Shared-algorithm cryptography

● Symmetric-key cryptography

● Public-key cryptography

● Cryptographic hash functions

● Key infrastructure

● Threshold secret sharing

4

Naive Approach
● Two parties agree on an encryption algorithm (e.g., rot13) and keep it secret

○ 50BC - Caesar’s Cipher - substitution

● Use it to encrypt messages to each other

● 1883. Kerckhoffs’ Principle – A cryptosystem should be secure even if

everything about the system, except the key, is public knowledge

5

One-Time Pad
● First described by Miller in 1882, then reinvented by Vernam in 1917

● One-time pad (OTP)

○ c = Encryption(m) = m XOR key

○ m = Decryption(c) = c XOR key

○ Key is a random string at least as long as the plaintext

● Provides “perfect” secrecy in principle

● Practical disadvantages:

○ Keys must not be used more than once and must be truly random and uniform

○ Key length depends on the message length

6

Outline

● Shared-algorithm cryptography

● Symmetric-key cryptography

● Public-key cryptography

● Cryptographic hash functions

● Key infrastructure

● Threshold secret sharing

7

Definition
● Encryption of plaintext and decryption of ciphertext are done using a

well-known algorithm and the same key, hence symmetric crypto

8

Characteristics

✅ An algorithm is normally public, so anyone can analyze it and try to find flaws

❓ Key size: as computers get faster, key sizes have to increase

○ DES (1976) used 56-bit keys - brute force search now feasible

9

Symmetric-key ciphers

Stream ciphers Block ciphers

Stream Ciphers
● Making OTP practical (and less secure)
● Require Pseudo Random Generators
● Examples: RC4 (was used in HTTPS and WEP), CSS (DVD encryption), E0

(Bluetooth), A5/1,2 (GSM encryption), Salsa20/ChaCha, …

10

Block Ciphers
● Encrypt blocks of data of fixed size
● Modes of operation handle variable length data

11

Examples of Block Ciphers
● Data Encryption Standard (DES):

○ Block size 64 bits

○ Key size 56 bits

○ Deprecated

● Advanced Encryption Standard (AES):

○ Block size 128 bits

○ Key size 128/192/256 bits

○ Hardware support in Intel and AMD processors

12

Modes of Operation - Electronic Code Book
● Electronic Code Book (ECB)
● Example of a bad mode of operation (insecure, obsolete):

same plaintext blocks encrypt to same ciphertext blocks

13

Original ECB-encrypted
image

 en.wikipedia.org

Modes of Operation - Cipher Block Chaining
● Cipher Block Chaining (CBC)
● A secure mode of operation

(when used correctly)

14

 en.wikipedia.org

Modes of Operation - Counter Mode (CTR)
● Somewhat turns a block cipher into a stream cipher
● Generates the next keystream block by encrypting values of a "counter"

15Figure credit: Wikipedia

➔ (+) Parallelizable, software and hardware efficient, random access to blocks,
simplicity, message of arbitrary bit length

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Outline

● Shared-algorithm cryptography

● Symmetric-key cryptography

● Public-key cryptography

● Cryptographic hash functions

● Key infrastructure

● Threshold secret sharing

16

Public-key Cryptography
● Solves the problem of having to agree on a pre-shared key

● (Public, private) key pair instead

● Public & private key mathematically related

○ uses large-number arithmetic

○ relies on computational assumptions believed to be difficult

● "Owner" of identity holds private key secret, distributes public key to communication

partners

17

First Approach of Asymmetric Crypto
● 1975. Diffie and Hellman in “New directions in cryptography” describe the idea

of asymmetric (public key) cryptography:

We stand today on the brink of a revolution in cryptography. The development of cheap digital hardware
has freed it from the design limitations of mechanical computing and brought the cost of high grade
cryptographic devices down to where they can be used in such commercial applications as remote cash
dispensers and computer terminals.

In turn, such applications create a need for new types of cryptographic systems which minimize the
necessity of secure key distribution channels and supply the equivalent of a written signature. At
the same time, theoretical developments in information theory and computer science show promise of
providing provably secure cryptosystems, changing this ancient art into a science.

18

Primitives
● Public and private key

○ Two keys (numbers), public is distributed widely, private is kept secret
○ Easy: f(private) -> public
○ Hard: f(public) -> private

● Encryption and Decryption
○ Encrypt with the public key, decrypt with the private key
○ Hard to decrypt without the private key

● Digital signatures
○ Sign with the private key, verify the signature using the public key
○ Hard to create a signature if only public key is known

● Interactive key exchange
○ Create a shared secret over an insecure communication channel

19

Interactive Key Exchange
● Diffie-Hellman

Key Exchange

 Credit: A.J. Han Vinck, Introduction to public key cryptography 20

Diffie-Hellman Key Exchange

● Security of DH relies on hardness of the Discrete Logarithm Problem (DLP)

● The DLP is hard not in all groups – must choose appropriately

● Application example: the Handshake protocol in TLS
21

Alice

Picks random a

BobAgree on a finite algebraic group G
with generator g

g a

Picks random b
g b

Computes s = (g b) a Computes s = (g a) b

Elliptic Curve Cryptography
● Elliptic curve cryptography (ECC) is based on the algebraic structure of elliptic

curves over finite fields.
○ General elliptic curve: y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6

○ Set of points satisfying an equation with degree two in one of the variables and
three in the other

● Hardness (Trapdoor)
○ Determining n from Q = nP given known Q and P if n is large is hard
○ Computing Q is easy

22

Elliptic Curve Cryptography
● Elliptic curve cryptography (ECC) is based on the algebraic structure of elliptic

curves over finite fields.
a. General elliptic curve: y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6
b. Montgomery curve: y2 = x3 + ax2 + x

● Smaller keys for equivalent security than traditional crypto
(e.g., 256-bit for ECC comparable to 2048-bit RSA)
a. Faster operations
b. Smaller public keys -> smaller certificates and less data

● Popular secure curves with known generation parameters:
a. Curve25519
b. Curve448

23

Elliptic Curve Diffie-Hellman (ECDH)
● Diffie-Hellman key exchange on an elliptic curve

● Steps

○ Alice and Bob agree on a curve with a base point G that generates a subgroup of

order n

○ Alice picks a random dA and sends HA= dAG to Bob

○ Bob picks a random dB and sends HB= dBG to Alice

○ They compute S = dAHB= dA(dBG) = dB(dAG) = dBHA

24

Elliptic Curve Digital Signature Algorithm (ECDSA)
● A variant of the Digital Signature Algorithm (DSA) using elliptic curve crypto

● For 80-bit security (280 operations), ECDSA public key – 160 bits, DSA – 1024

bits; whereas signature size is the same

● Used in Bitcoin to authenticate transactions and every Bitcoin address is a

cryptographic hash of an ECDSA public key

● iMessages and iCloud keychain syncing use ECDSA

25

Elliptic Curve Digital Signature Algorithm
Steps

● Compute hash of message m and truncate it to z to be the same bit length as order n.

● Select a cryptographically secure random integer k from [1,n-1].

● Calculate the curve point P = kG.

● Calculate the number r = xP mod n (where xP is the x coordinate of P); r != 0.

● Calculate s = k−1(z + rdA) mod n.

The pair (r,s) is the signature. To verify

● u1 = s−1z mod n, u2 = s−1r mod n, P = u1G + u2HA

● The signature is valid only if r = xP mod n
26

Elliptic Curve Digital Signature Algorithm
● Requires random or unpredictable data as input to generate k, different k for

different signatures

● 2010: Recovery of the ECDSA private key used by Sony to sign software for

the PlayStation 3 due to static k

● 2013: Loss of funds in Android Bitcoin Wallet due to k by a faulty random

number generator

27

Outline

● Shared-algorithm cryptography

● Symmetric-key cryptography

● Public-key cryptography

● Cryptographic hash functions

● Key infrastructure

● Threshold secret sharing

28

Cryptographic hash functions
● Map bit-strings of any length to a fixed-length output in a deterministic way

● Desirable properties of hash functions (informal definitions):
○ One-way: given y it is infeasible

to find any x such that y = h(x)

○ Collision-resistance:

infeasible to find x and x’ such that h(x)=h(x’)

○ Pseudo-randomness:

indistinguishable from a random oracle

29[credit: Cisco]

http://ciscodocuments.blogspot.ch/2011/05/chapter-04-fundamentals-of-cryptography.html

Examples of Usage
● Password storage

● Files/Messages integrity verification

● Key derivation

● Proof-of-work

● Blockchains

● ...

30

Usage for Integrity
● Create a small (constant-size) digest of an arbitrarily large message

● Knowing the digest, one can verify that the message matches (recall that

cryptographic hash functions are collision-resistant so one is unable to find

another message that hashes to the same digest)

31

Keyed Hash Functions for Authentication
● Usually to prove message authenticity between two parties who share a key

● Takes an input message and a key, yields a message digest that depends on

both

● Hard to derive message or key from resulting hash

● Hard to find any relationship between hashes with different keys

● Naive implementation: just use unkeyed hash on key + message, for subtle

cryptographic reasons, not the best design

32

Message Authentication Code(MAC)

33Credit: Wikipedia

https://en.wikipedia.org/wiki/Message_authentication_code

Hash Message Authentication Code (HMAC)
● Examples: HMAC_SHA256,

HMAC_SHA1, …
● Used in TLS, IPsec, …

34Credit: Wikipedia

https://en.wikipedia.org/wiki/HMAC

Merkle Tree
● Hash-based data structure for efficient summarizing and verifying the integrity

of large sets of data
● Useful for ensuring integrity of stored data and data in transmission
● Every leaf node – data block, non-leaf node – the crypto hash of its children

35Credit: Wikipedia

https://en.wikipedia.org/wiki/Merkle_tree

Merkle Tree
● Inclusion of data (leaf node) is verifiable in time proportional to the logarithm

of the number of tree leaf nodes

● Possible to verify inclusion of a block without knowing the other data blocks

● Used in IPFS, BitTorrent protocol, Git, Apache Cassandra, Bitcoin, …

36Source: btc-investor.net

https://btc-investor.net/merkle-tree-hashing-blockchain/

Outline

● Shared-algorithm cryptography

● Symmetric-key cryptography

● Public-key cryptography

● Cryptographic hash functions

● Key infrastructure

● Threshold secret sharing

37

Key Distribution
● For both symmetric and asymmetric crypto we have to distribute keys

● Symmetric cryptosystems require the exchange of secret keys

○ Need for a secret/confidential channel

● Asymmetric cryptosystems require the exchange of public keys

○ Need for a trusted/integrity protected channel

● Authorities trusted to provide secret / trustworthy keys:

○ Key Distribution Centers (KDC)

○ Certification Authorities (CA)

38

Using Hierarchy of Trust
● One KDC/CA is not enough to serve all users
● KDCs/CAs are organized into hierarchies or peer networks

39

Figure Credit:
P. Janson “IT
Security
Engineering” course

Public Key Infrastructure (PKI)
PKI binds public keys to their owners

● Certificate Authority (CA): stores, issues and signs the digital certificates

● Root certificate public keys are embedded in web browser

● Few Root CAs sign "delegation" certificates declaring that other CAs are also

trusted to sign server certs

● Subsidiary "issuing" CA signs a certificate for, e.g., Google servers

● When your browser connects to Google server via SSL, the server sends its

server-side certificate and the "chain" of signatures down from the root CA

40

Attacks
● Huge problem when CA gets compromised (Comodo, DigiNotar)

41

Methods Used for PKI
● Certificate Authorities (CAs):

● Web of Trust (WOT):

○ PGP, GnuPG

○ Self-signed certificates

42

Outline

● Shared-algorithm cryptography

● Symmetric-key cryptography

● Public-key cryptography

● Cryptographic hash functions

● Key infrastructure

● Threshold secret sharing

43

But Who Holds the Keys?
Any encrypted data is secured with a private key

● A private key is just information (a number)!

● If the key leaks, anyone can decrypt the data

− Regardless of where it’s stored: cloud, blockchain…

Privacy & Accountability with secret-sharing

● Essential idea: after encrypting data,
“deal” the secret key to a threshold t of n parties

44

Secret Sharing: Illustration
Suppose you’re a pirate & bury your treasure…

X

45

Keeping the Location Secret
You have 3 henchmen who you want to send back for it later, but
you don’t trust any one completely

46

Secret Sharing: Illustration
You mark the spot between two reference points

XSecret!

47

Secret Sharing: Illustration
Then draw three parallel reference lines…

XSecret!

48

Secret Sharing: Illustration
…and another line intersecting all four…

XSecret!

49

Secret Sharing: Illustration
The intersection points are the secret shares...

XSecret!
X X X

Secret
Shares

50

Secret Sharing: Illustration
You give one of these shares to each henchman

XSecret!
X X X

Secret
Shares

51

Threshold Secret Sharing
Now suppose your henchmen come back later to recover the treasure…

● Any one henchman won’t know how to find it

● Any two henchmen will be able to!

You get both threshold privacy of the secret…

● No single compromised party can recover it

You also get threshold availability of the secret

● Can still recover if one henchman goes missing

52

Secret Sharing: Illustration
One henchman alone can’t recover secret

XSecret!

X
???

53

Secret Sharing: Illustration
…but any two working together can!

XSecret!
X

X

54

Threshold Cryptosystem
● Shamir's Secret Sharing (SSS)

● Verifiable Secret Sharing (VSS)

● Publicly Verifiable Secret Sharing (PVSS)

● Distributed Key Generation (DKG)

55

Alice sends a message to Bob...

Secrecy? Integrity? Authenticity?

Share a secret with multiple parties but trust no individual (Byzantine attacker model)

Threshold secret sharing

Alice wants to prove that an item belongs to a set, without revealing the set

Accumulators

Interesting Facts
● The DH key exchange protocol was published in 1976
● The RSA scheme was published in 1977

Rewind...

● 1970. James Ellis at UK GCHQ realises that the idea of public key crypto is possible, in
a secret report “The possibility of Non-secret Encryption”

● 1973. Clifford Cocks at UK GCHQ discovers a workable mathematical formula for
non-secret encryption in a secret report “A note on Non-Secret Encryption”. His formula
was a special case of the RSA algorithm

● 1974. Malcolm Williamson at UK GCHQ describes a key exchange method in a secret
report “Non-Secret Encryption Using a Finite Field”. His method was similar to the one
discovered by Diffie and Hellman

57

End-to-end encryption
● Only the communicating users can read the messages

● In principle, prevents potential eavesdroppers – including telecom and

Internet providers – from being able to decrypt the conversation

● Examples: TLS, Signal Protocol, ...

58

Man-in-the-Middle
● Open source: mitmproxy.org

● Commercial: Blue Coat SSL Inspector (formerly Netronome)

● Deployment models:
○ "Intended" commercial deployment: at a company's firewall:

use custom root CA, but tweak internal web browser to trust

○ Iran's approach in 2011: just use untrusted root cert, assume many/most users will click OK to

browser warning

○ More slick (NSA?) approach: subpoena/steal/acquire any root or subordinate CA's private key

● CAs are a major concern and a potential point of failure to MiTM attacks:

○ Google Certificate Transparency project aims at unveiling problems promptly
59

accumulators

Merkle tree

can classify it as a "static"
accumulator

You can add many elements, but only
once. Can prove inclusion, but given
the root, you can't add more elements

Slide credits: Tadge Dryja 60

accumulators

accumulator terms

"Dynamic": There's a Remove()
function in addition to Add(), which
does what you'd think

"Universal": There's a Prove() and
Verify() for elements not in the set.

Slide credits: Tadge Dryja 61

RSA accumulator

RSA-based accumulators...
Wait, RSA? Tough to cover in a few
minutes, but a quick refresher!

The original digital signature
algorithm. Also does encryption.
Powerful, but a bit of a minefield.

Implement with caution! Slide credits: Tadge Dryja 62

RSA

make 2 prime numbers, p, q. n = pq.
phi = (p-1)(q-1)
e rnd between 1 and phi s.t.
gcd(e,phi) = 1

Compute d s.t. d * e = 1 mod phi

pubkey: (n,e)

private key: (n,d) Slide adapted from Tadge Dryja 63

RSA

encrypt: c ≡ me mod n
decrypt: m ≡ cd mod n

sign: s ≡ md mod n
verify: m ≡ se mod n

cool!

Slide credits: Tadge Dryja 64

RSA accumulating

for the accumulator n = pq, but there
is no d and no e.

Start with v = 3 or some other
starter prime.

Every element x in the set must be
prime, so need to hash onto primes

Slide credits: Tadge Dryja 65

RSA accumulating

Add(x, v): v' ≡ vx mod n
keep doing that for x1, x2, x3 ...

Prove(x, v): an inclusion proof p is
the accumulator v with every element
except x added

Verify(x, p, v): px ≡? v mod n
Slide credits: Tadge Dryja 66

RSA accumulator properties

constant size: v, p, x --
everything's the same length as n,
regardless of number of elements

Can prove many inclusions at once,
again same size

Slide credits: Tadge Dryja 67

RSA accumulator issues

p, q are trusted setup. Anyone who
knows p, q can create false proofs

while proofs are aggregatable, proof
updates are not

Slide credits: Tadge Dryja 68

RSA proof updates

many proofs p1=v
X-x1, p2=v

X-x2,
p3=v

X-x3...

add single element x8
Must compute p1

x8, p2
x8, p3

x8

adding multiple elements x8, x9
must compute (p1

x8)x9, (p2
x8)x9, (p3

x8)x9

Slide credits: Tadge Dryja 69

What do we want to accumulate?

How about accumulating some bitcoins?

If proof updates are few /
infrequent, then we're OK.
But if we're looking at the UTXO set,
proof updates happen every 10
minutes.

Slide credits: Tadge Dryja 70

What do we want to accumulate?

If we wanted to prove every bitcoin:

60M utxos
~6K updates every 600 sec (10/sec)

For individual proofs, 60M * 10 =
600M exponentiations / sec

@1ms per op, need 600K cpu cores!
Slide credits: Tadge Dryja 71

scalability

Do we need to keep proofs for every
possible transaction?

Maybe not; if wallets keep track of
their own UTXOs and proofs, it's much
more reasonable

Slide credits: Tadge Dryja 72

scalability

Lightly used wallet: 10 utxos

6K updates per block * 10 txos =
60K exponentiations per block

@1ms each, that's 1 minute of CPU
time per block
Doable, but still lots of work

Slide credits: Tadge Dryja 73

