
Markov Chains and Algorithmic Applications: WEEK 10

Reminder. We would like to sample from a distribution π = (πi, i ∈ S) on state space S. One option for
this is the Metropolis-Hastings algorithm:

1. Consider a base chain on S with transition probabilities ψij
(irreducible, aperiodic and such that ψij > 0 if and only if ψji > 0)

2. Define acceptance probabilities aij = min

(
1,
πj ψji
πi ψij

)
3. Define then

pij =

{
aij ψij if j 6= i

ψii +
∑
k∈S\i ψik(1− aik) if j = i

4. The Markov chain on S with transition probabilities pij is such that pij(n) −→
n→∞

πj and detailed

balance holds. Running then the Markov chain from an arbitrary initial state i ∈ S for a sufficiently
large amount of time (so that pij(n) is indeed close to πj for all j ∈ S) is a way to (approximately)
sample from π.

1 Application: optimization of a function

Let f : Z→ R be a function to be minimized, which is assumed to be bounded from below and such that
limi→±∞ f(i) = +∞ (so that at least one global minimum exists).

Problem: If the function f is complicated and has many local minima, then (greedy) algorithms usually
fail to converge to a global minimum1.

Our aim: to sample from the distribution

π∞(i) =
1{i is a global minimum of f}

Z∞ = ] global minima of f
, i ∈ Z

Sampling from π∞ is a difficult task because

1. we have to compute Z∞, and

2. the global minima may be very isolated on the state space, hence checking the neighborhood of i is
not sufficient to compute 1{i is a global minimum of f}.

Instead, we will sample from the distribution πβ :

πβ(i) =
e−βf(i)

Zβ
, i ∈ Z

where β > 0 is a fixed parameter and Zβ =
∑
i∈Z e

−βf(i) is the normalization constant (that might still
be difficult to compute). The idea is that as β increases, distribution πβ concentrates around the global

minima of f , hence πβ
β→∞−→ π∞.

To avoid computing Zβ , we will use the Metropolis-Hastings algorithm to construct a Markov chain
having πβ as its stationary distribution:

1This typically also happens when Z, the domain of the function, is replaced by a finite but high-dimensional domain.
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1. We choose a simple irreducible base chain (such that ψij > 0 iff ψji > 0), the symmetric random
walk on Z: ψi,i±1 = 1

2 (remember that this chain has no stationary distribution, yet this does not
influence the algorithm in any way).

2. The acceptance probabilities are

aij = min

(
1,
πj
πi

)
=

{
min

(
1, e−β(f(j)−f(i))

)
j = i± 1,

0 otherwise.

In words, we always accept a transition to a state with a lower value of f , but we still accept some
non-favorable transitions to avoid getting stuck in a local minimum.

3. The constructed chain having transition probabilities

pij =

{
ψijaij j 6= i,

1−
∑
k 6=i ψikaik j = i,

is such that pij(n)
n→∞−→ πβj ∀j ∈ S.

1.1 How to choose β ?

Let us give a ballpark estimate to choose β correctly. Note that this is just a qualitative idea which can
only serve as a first guide when these ideas are applied to specific problems. To choose β, we decide that
we want to spend a 1− ε fraction of time in global minima. Recall that πi is the average fraction of time
that the chain spends in state i when it has reached the stationary distribution. Thus we set

1− ε ≈
∑

i global minimum

πβ(i)

Let f0 = mini∈Z f(i) be the global minimum and f1 = mini∈Z,f(i) 6=f0 f(i), f2 = mini∈Z,f(i) 6=f0,f1 f(i),
. . . be the local minima. Let N0, N1, N2, . . . be the number of points were the minima f0, f1, f2, . . . are
reached. We have∑

i global minimum

πβ(i) =
N0e

−βf0

Z
and Z =

∑
i∈Z

e−βf(i) =
∑
k≥0

Nke
−βfk ≈ N0e

−βf0 +N1e
−βf1

(as we think of β being reasonably large and f0 < f1 < f2 < . . .). Therefore:

∑
i global minimum

πβ(i) ≈ N0e
−βf0

N0e−βf0 +N1e−βf1
=

1

1 + N1

N0
e−β(f1−f0)

≈ 1− N1

N0
e−β(f1−f0)

Remembering that we want this term to be approximately equal to 1− ε, we obtain the following rough
estimate for β:

β ≈ 1

f1 − f0
log

(
N1

εN0

)
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1.2 In practice: simulated annealing

The choice of β can influence the output of the Metropolis algorithm significantly:

• If we choose β large, then πβ is close to π∞, but the chain produced by the algorithm converges
very slowly due to the high probability given to self-loops. In essence, the chain can almost become
reducible.

• If we choose β small, then the chain produced by the algorithm converges quickly to the stationary
distribution πβ at the cost of potentially being very far from π∞.

The ideal solution would be to combine the best of both worlds, similarly to creating certain alloys: simply
mixing the metals at high temperature then immediately bringing the system down to room temperature
does not give the alloy the desired properties. Instead, the temperature should be decreased at a slow
speed for the metals to bond appropriately.

Consider β as representing an inverse temperature. Then the annealing approach detailed above gives us
a good algorithm to find a global minimum:

1. Start with β small (i.e. high temperature regime): the algorithm will then visit all the states of S
quite uniformly at the beginning. After a sufficiently high number of iterations, the Metropolized
chain is roughly distributed as πβ .

2. Increase then β (i.e. lower the temperature) and rerun the algorithm from the state found in the
previous step.

3. Repeat step 2 until β is sufficiently large, so that one can be quite sure (i.e. with prob. 1 − ε) to
have reached a global minimum.
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