TCP/IP NETWORKING

LAB EXERCISES (TP) 5
CONGESTION CONTROL; TCP, UDP

December 1st, 2022
Deadline: December 14th, 2022 at 23.55 PM

Abstract

In this lab session, you will explore in a virtual environment the effect of the congestion control
mechanism of TCP and compare with a situation without congestion control. You will see what types of
fairness are achieved by this congestion control mechanism. You will observe that a congestion control
mechanism is also essential to avoid congestion collapse.

0.1 ORGANIZATION OF THE LAB

In this document, you will read the lab instructions. You will solve Moodle quizzes, which will be graded.
Carefully follow this document while doing the lab.

0.2 PRELIMINARY INFORMATION

1. On the virtual machine (VM), you need to download an archive that contains the programs for this lab.
Download the file 1ab5. zip from Lab 5 folder from from Moodle, copy it in the shared folder and
then uncompress it. The folder 1ab5 contains three folders. The folder 1ab5/scripts/ contains
the python scripts that will be used to build the topologies of this lab for the experiments that will run
in Mininet. The folders 1ab5/tcp/ and 1ab5/udp/ contain tcp and udp (correspondingly) clients
and servers that we will use to create traffic over the topologies.

2. If needed, make the programs executable by going in the directory 1ab5 (by typing cd lab5) and

typing:
chmod +x tcp/tcpclient tcp/tcpserver udp/udpclient udp/udpserver

Note: All folders contain binary programs as well as the source code. Normally, the binaries should
work in your VM and you should not need to recompile the source codes. If you want to (or need
to) recompile them, you will probably need to install a few packages, including gcc, make, and
linux-module-headers. Then, each program can be compiled by typing make in its own
directory.

3. Last, we will need to check and/or modify the congestion control mechanism. On a Linux machine,
you can test which congestion control mechanism is used by typing in a terminal:

cat /proc/sys/net/ipvd/tcp_congestion_control

In this lab, we will force TCP to use the CUBIC congestion control algorithm except differently
requested. If the congestion control algorithm is not Cubic, you should change it to Cubic until the
next reboot by typing in a terminal:

echo cubic >/proc/sys/net/ipv4/tcp-congestion_control

You should be in sudo su mode to execute this command. Similarly, when requested, you can set the
RENO or the DCTCP congestion control algorithm, i.e.,

echo reno >/proc/sys/net/ipvé4/tcp_congestion_control

echo dctcp >/proc/sys/net/ipvéd/tcp_congestion_control

1 TCP vs UDP FLOWS

10.20.0.0/24 rl 10.20.1.0/24
Router
N swi
h2 eth0 1/_—3' i ' n "
2

_— eth0 ethl etho
R - 3

h3

Figure 1: Initial configuration with 3 PCs and one router.

You are given the script 1ab5/scripts/lab51_network.py according to the following addressing
scheme:

e The subnet of hosts hl, h2 and the router (r1) is 10.20.0.0/24. The addresses of hl, h2 and of the
router are respectively 10.20.0.1, 10.20.0.2 and 10.20.0.10.

e The subnet of h3 and of the router is 10.20.1.0/24. The addresses of h3 and of the router are respec-
tively 10.20.1.3 and 10.20.1.10.

Open a terminal in your VM and run the script 1ab51 _network.py. Test the connectivity of the created
topology with the pingall command.

Answer Lab 5 - Part 1 on Moodle.

1.0.1 REMARKS ON THE PROGRAMS UDPCLIENT, TCPCLIENT, UDPSERVER AND TCPSERVER

The directories 1ab5/tcp/ and 1ab5/udp/ contain the executable and the source code of the programs.

eFor each UDP flow, you need one UDP client and one UDP server. Explanation: each

@ packet sent by a client contains its sequence number (the first packet contains the label “1”, the

mportant: second “27,...) and a lot of “0” to reach a size of 1000 bytes or 125 bytes. The loss percentage

wematmm— printed by the server is given by 100- (one minus the ratio between the number of packets

received and the largest sequence number received). Because of this implementation, the loss percentage
printed by the server is wrong if two clients talk to the same server.

e For TCP, one server can handle mutiple clients. The server creates one thread per accepted con-
nection.

o Before each experiment, kill all clients (TCP and UDP). You can do that by pressing “Control-C”
in the terminal of the client. This will reset the average values printed by the clients. In theory, you
can keep the server running but killing them and relaunching them will not harm.

e The printed rates correspond to application data. They count the amount of data that was trans-
ferred by the TCP/UDP client to the TCP/UDP server. They do not take into account headers.

e For all experiments, you have to wait until the printed values stabilize. This is particularly impor-
tant for TCP. The rate at which TCP sends packets depends on the losses that occur at random. Thus,
to obtain deterministic values, you should wait for the average rate to be stable.

e Goodput. The goodput of a flow is the rate of application data (i.e., useful data) that is successfully
transmited. For the theoretical questions, you should take into account that the packets also contain
header except from the application data.

e Units. In all your answers, indicate in which unit your result is expressed (Mbps, kbps, %, ...).

e Queueing delay. It is defined as the time (in the appropriate unit) that a packet waits stored in the
queue of a router until it is forwarded.

1.1 COMPETING UDP rFLOWS, AND TCP FLOWS COMPETING WITH UDP FLOWS

Now we will explore what happens when two UDP flows are competing for the same bottleneck. The router
should have a capacity of 5 Mbps and is the bottleneck. We consider the following scenarios:

e Host hl is streaming real-time data (e.g., coming from a Phasor Measurement Unit (PMU)) at rate 1
Mbps to host h3 using UDP.

e Host h2 is streaming a video to host h3 using UDP. Depending on the quality, h2 sends at rate 0.5
Mbps, 4 Mbps or 9 Mbps.

h1

o Scenario | h1 (UDP) | h2 (UDP)

h3 Al 1 Mbps | 0.5 Mbps
hz > A2 1 Mbps 4 Mbps
% A3 1 Mbps 9 Mbps

Answer Lab 5 - Part 2 on Moodle.

2 THE IMPORTANCE OF CONGESTION CONTROL

In this section, we will explore why having a conges-
tion control mechanism is necessary. The system that
we want to emulate is composed of five links depicted
on the left. The capacities of the links range from
0.5Mbps to 10Mbps. There are two flows in this net-
work:

e one flow that goes from A to B (in red),
e one flow that goes from C to D (in blue).

We will show evidence of a phenomenon called con-
gestion collapse: the more aggressive C is, the smaller
the total goodput will be.

Answer Lab 5 - Part 3 on Moodle.

3 TCP: FAIRNESS AND INFLUENCE OF RTT

The congestion control algorithm of TCP guarantees that the network resources are shared among the differ-
ent connections. In this part, we will explore how TCP CUBIC shares the bandwidth when one or multiple
bottlenecks are present in the network. Note that for low RTT values CUBIC performs similarly to RENO,
whereas this is not the case for higher RTT values as it is explained in the lecture notes. Also, we will
perform comparisons between the bandwidth allocations of TCP CUBIC and of TCP RENO.

Fo Part 4 and Part 5, we will reuse the setting of Figure 3, which is created by the script
wemt 1ab51_network.py. The bandwidth of the router (rl-ethl) should be limited to S Mbps (use
the same configuration as in Section 1.4). Test the connectivity of your topology with the pingall command.

In this part in particular, it is important to wait until the printed goodputs stabilize. To speedup
wame the convergence, it is very recommended to close all the unnecessary programs on your computer.
Especially, you should close the programs that may perform things on background (such as web-browsers,
Dropbox synchronization, other virtual machines, etc). In any case, you should wait around 3-5 minutes to
see the stable results.

ECN and RED are already enabled in the script 1ab51 _network. py, in order to reduce the impact of
queueing delays on the RTT values.

Answer Lab 5 - Part 4 on Moodle.

3.1 FAIRNESS OF TCP CONNECTIONS TRAVERSING MULTIPLE BOTTLENECKS

5Mb/s 5Mb/s

h1 = 1103 ——x > h3 In this part, your goal is to study how the
Tt — Zt? available bandwidth is shared when (i) one
TCP connection traverses two queues (ii)
each of the queues is also traversed by an-
other TCP connection, as shown in the fig-

ure.

h2

The notion of fairness is difficult. A rate allocation is always a trade-off between maximizing the total rates
sent by the connection or trying to equalize the rates of all users. For example, in this scenario, the flow
1103 uses twice more resources than the flows /02 and 2to3. Thus, the bigger the traffic /703 is, the lower
the aggregate goodput can be.

We now want to explore what is the allocation provided by TCP.

Answer Lab 5 - Part 5 on Moodle.

h1 Routerl Router2 h3

B o011 eth0 el ethl 400.40.20 Iﬁlm;o.s.zo ethd ‘
M, o » -
etho 100110 1001010 o eth2 10.0.3.3
oth1 $10.0.2.20
eth0 @ 10.0.2.2
2

Figure 2: Fairness of TCP connections traversing multiple bottlenecks: wiring and addressing scheme.

4 RESEARCH EXERCISE: STUDY OF THE USE OF ECN IN TCP CUBIC
AND IN DCTCP

ECN allows end-to-end notification of network congestion without dropping packets. Conventionally,
TCP/IP networks signal congestion by dropping packets. When ECN is enabled together with some ac-
tive queue management scheme such as RED, an ECN-aware router may set a mark, i.e., the Congestion
Experienced (CE) bit, in the IP header instead of dropping a packet in order to signal impending congestion.
The receiver of the packet echoes (by setting the ECN Echo flag) the congestion indication to the sender,
which reduces its transmission rate as if it has detected a dropped packet and begins fast retransmit.

In this research exercise, we will study its use in Cubic and in DCTCP. In addition, we will study the
effect of enabling ECN/RED on the RTT by comparing CUBIC without using ECN/RED and CUBIC with
ECN/RED.

Answer Lab 5 - Bonus on Moodle.

	Organization of the lab
	 Preliminary Information
	TCP vs UDP flows
	Remarks on the programs UDPclient, TCPclient, UDPserver and TCPserver
	Testing the connectivity with basic UDP and TCP clients/servers
	Artificial limitation of the bandwidth of the router
	UDP test
	TCP test

	Testing the connectivity with basic UDP and TCP clients/servers
	Artificial limitation of the bandwidth of the router
	UDP test
	TCP test

	Competing UDP flows, and TCP flows competing with UDP flows
	TCP flows competing with UDP flows
	TCP flows competing with UDP flows

	The importance of congestion control
	Theoretical analysis
	Experimental setting
	UDP
	TCP

	Theoretical analysis
	Experimental setting
	UDP
	TCP

	TCP: fairness and influence of RTT
	Adding delay to an interface
	Fairness between TCP connections and delay
	Adding delay to an interface
	Fairness between TCP connections and delay
	Fairness of TCP connections traversing multiple bottlenecks
	Theoretical analysis
	Experimental setting
	Theoretical analysis
	Experimental setting

	Research Exercise: Study of the Use of ECN in TCP CUBIC and in DCTCP

