
Rethinking General-Purpose Decentralized
Computing

Enis Ceyhun Alp
∗

enis.alp@epfl.ch
EPFL

Eleftherios Kokoris-Kogias
∗

eleftherios.kokoriskogias@epfl.ch
EPFL

Georgia Fragkouli

georgia.fragkouli@epfl.ch
EPFL

Bryan Ford

bryan.ford@epfl.ch
EPFL

Abstract
While showing great promise, smart contracts are difficult

to program correctly, as they need a deep understanding of

cryptography and distributed algorithms, and offer limited

functionality, as they have to be deterministic and cannot

operate on secret data. In this paper we present Protean,

a general-purpose decentralized computing platform that

addresses these limitations by moving from a monolithic

execution model, where all participating nodes store all the

state and execute every computation, to a modular execution-

model. Protean employs secure specialized modules, called

functional units, for building decentralized applications that

are currently insecure or impossible to implement with smart

contracts. Each functional unit is a distributed system that

provides a special-purpose functionality by exposing atomic

transactions to the smart-contract developer. Combining

these transactions into arbitrarily-defined workflows, devel-

opers can build a larger class of decentralized applications,

such as provably-secure and fair lotteries or e-voting.

ACM Reference Format:
Enis Ceyhun Alp, Eleftherios Kokoris-Kogias, Georgia Fragkouli,

and Bryan Ford. 2019. Rethinking General-Purpose Decentralized

Computing. InWorkshop on Hot Topics in Operating Systems (HotOS
’19), May 13–15, 2019, Bertinoro, Italy. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3317550.3321448

∗
Equal contribution

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6727-1/19/05. . . $15.00

https://doi.org/10.1145/3317550.3321448

1 Introduction
Decentralized systems have been studied extensively over

the past decades [14, 17, 40, 44, 50]. One of the most recent,

and arguably the most popular, decentralized system is the

blockchain and its most promising application is smart con-

tracts. Smart contracts are user-defined programs that are

executed by a network of nodes that reach consensus on

program state. Ethereum, the world’s second largest cryp-

tocurrency, claims to be a general-purpose decentralized

computer that can support execution of arbitrary code in

smart contracts. However, Ethereum and its successors [1, 2]

fall short of their claim due to several shortcomings. First,

they do not support non-deterministic operations and cannot

securely operate on private data. Second, executing every

contract on every node limits the overall throughput of the

system, hence degrading its performance. Finally, verifying

the execution of a smart contract might incur a high computa-

tional cost and cause the verifier’s dilemma [30], where nodes
are incentivized to deviate from the protocol by skipping the

verification process. This phenomenon can undermine the

security of smart contracts.

Enabling expressive and secure decentralized computation

has the potential of revolutionizing the way web applications

are deployed. First, smart contracts that can hold private data

could revolutionize data sharing and give rise to data markets

controlled by users. Second, efficient smart contracts that can

support thousands of transactions per second could provide a

more secure and fault-tolerant alternative to the centralized

cloud-computing infrastructure. Finally, smart contracts that

provide unlinkability (e.g., Neff shuffles [34], which is im-

possible to implement in Ethereum) could revolutionize gov-

ernance and decision-making processes. The current land-

scape, however, is fragmented into million-dollar startups

that try to deliver some of these promises by rejecting the

existing smart-contract offerings and instead (re)inventing

standalone components that might reintroduce centraliza-

tion (e.g., using trusted hardware to hold private data).

In this paper, we argue that current smart-contract sys-

tems fail to either enable or sufficiently support a wide range

of applications due to their monolithic architecture where
consensus and code execution are tightly coupled. In order to

105

https://doi.org/10.1145/3317550.3321448
https://doi.org/10.1145/3317550.3321448

overcome these limitations, we present Protean, a system

for general-purpose decentralized computing that leverages

modularity, a well-studied design principle in computer sys-

tems [19, 22, 24, 48].

Protean is an ecosystem of special-purpose modules

called functional units that are formed by partitioning the

nodes of the system into subsets. Each functional unit

provides a unique specialized computation (e.g., consen-
sus [13, 27], randomness generation [45], private-data shar-

ing with access control [9, 25], or verifiable anonymity [34])

that is collectively performed by its nodes, and that is cryp-

tographically guaranteed to be valid. In this way, Protean

replaces the monolithic execution model of previous systems,

where every node performs the same computations, with

a modular execution model, where different sets of nodes

perform different computations in isolation from each other.

To summarize, thanks to its modular design, Protean

achieves the following: First, compared to the current smart-

contract systems, Protean enables users to build a larger

class of decentralized applications by supporting a richer

set of computations. Protean achieves this by delegating

computations to the relevant functional units where they

are performed only by the nodes of the unit, in isolation

from the rest of the system. Second, Protean provides great

flexibility to application developers as it can support mul-

tiple implementations of the same specialized computation

with different security-performance trade-offs. Third, since

functional units can perform different computations in par-

allel, Protean can achieve a better throughput than the

smart-contract systems where execution of a computation is

replicated across the network. Finally, Protean can mitigate

verifier’s dilemma by assigning nodes to computations they

prefer, as opposed to executing the whole smart contract.

2 Motivating Example
To get a better sense of the shortcomings of the current

smart-contract systems and how Protean addresses them,

we take a closer look at a popular class of decentralized appli-

cations, namely decentralized lotteries [16, 32]. Consider a

lottery smart contract that runs on Ethereum [47]. A lottery

round begins with the lottery organizer generating lottery

tickets and specifying a well-defined time period (measured

in number of blocks) during which participants are allowed

to purchase lottery tickets by depositing money to the lottery

account. Once the ticket acquisition period ends, Ethereum

miners, which are nodes responsible for reaching consen-

sus on the execution of smart contracts, executes the smart

contract that is provided by the lottery creator. This smart

contract would typically parse some source of public ran-

domness; use the randomness to select the lottery winner;

and transfer money to winner’s account.

In order to guarantee the fairness of the lottery, it is crucial

to have a source of randomness that is unbiasable and un-

predictable. However, generating randomness in Ethereum

is a challenging task since it is a deterministic system that

inherently lacks randomness. To work around this problem,

smart-contract developers create their own pseudo-random

number generator (PRNG) implementations. However, re-

searchers have shown that this practice causes vulnerabil-

ities [10, 39, 43] in smart contracts as malicious users can

manipulate the source of randomness.

A typical approach to generating randomness in Ethereum

is parsing the randomness from a future block (e.g., its times-

tamp, nonce or blockhash). This approach is vulnerable to

attacks where a malicious miner can manipulate the mining

process to bias the values of the block variables; hence the

randomness. Another method for generating randomness is

using a commit-then-reveal protocol. In this approach, each

user chooses a secret and shares their commitment to the

secret with other users. Later, users reveal their secrets and

a random value is calculated by combining the secrets. This

approach is susceptible to attacks where a user can choose

not to reveal their secret to bias the randomness generation

to their advantage (bias-via-abort [45]). Finally, another ap-

proach is to use an external oracle [3] that sends random

values to the smart contract. The drawback of this approach

is that it requires trusting a single entity for the quality of

randomness; hence creating a single point of trust.

Although there are secure multi-party computation

(SMPC) protocols for generating randomness [12, 21, 45], it is

not possible to run them on Ethereum’s monolithic execution

model as they involve operations that are non-deterministic

and/or use private data. In the following sections, we first

describe how Protean avoids the shortcomings of the exist-

ing systems with its modular design. Then, we come back to

lotteries and demonstrate how Protean can support secure

and fair decentralized lotteries.

3 System Overview
In this section, we give an overview of Protean’s design.

3.1 Goals
Protean has the following primary goals:

• General-purpose computation: Users can implement

and execute arbitrary decentralized applications (that

current smart-contract systems cannot support).

• High performance: Nodes can provision their resources

to specialize in supporting a specific functionality,

thereby improving the efficiency and performance of

the system.

• Extensibility: The set of provided functionalities can

be extended without major changes to the system.

• Decentralization: No single point of failure or compro-

mise.

106

Figure 1. Ethereum vs Protean: Ethereum’s monolithic architecture requires every smart contract to execute on every node.

Protean’s modular architecture delegates execution of a workflow to specialized functional units

3.2 System Design
Protean consists of a collection of special-purpose modules

called functional units (see Figure 1). Each functional unit

is composed of a set of physical nodes that are available in

Protean; and they collectively perform a specialized compu-

tation. Associated with each specialized computation is a set

of operations, namely transactions, that have well-defined se-
mantics, are executed atomically by all the nodes in the unit,

and trigger publicly-verifiable state transitions. Transactions

serve as secure building-blocks that are used for building

general-purpose decentralized applications. From the stand-

point of an application developer, executing a transaction is

analogous to making an API call to a software service: The

service is treated like a black box and the complexity of its

implementation is hidden from the users of the service.

Developers build a decentralized application by creating

workflows and storing them in the publicly-visible system

state. Eachworkflow contains a list of transactions and the ex-

ecution dependencies between them, and performs a specific

task of the application. Since workflows can contain transac-

tions that are supported by different functional units, exe-

cuting a workflow might require coordination between mul-

tiple units. Sharded blockchains, which are architecturally

similar to Protean, solve this problem by adopting a com-

munication model that is either client-driven [28] or shard-

driven [7]. Protean uses the client-driven model, where

users communicate with functional units to direct the exe-

cution of workflows, as it simplifies the design of functional

units and is a better fit for the target applications (e.g., lotter-
ies, e-voting, auctions) that require clients to interact with

the system. For applications that is not compatible with this

design, we can use a driver unit [7] to direct the execution

of workflows and run Byzantine-fault tolerant consensus.

Users join an application by executing one of its work-

flows. Upon retrieving the workflow from the system state,

users contact a system functional unit, called compiler unit,
that creates an execution plan for the workflow. An exe-

cution plan contains: (1) identities of the functional unit

nodes (i.e., network addresses and cryptographic identities)

that are going to execute the transactions, (2) a transaction

dependency-graph, and (3) additional parameters that are

required for executing the transactions (e.g., barrier point for
joining the lottery). Additionally, compiler unit cryptograph-

ically signs the execution plan so that users can prove to the

functional units that their request to execute a transaction

is valid. Users follow the execution plan to submit transac-

tion requests to functional units through the APIs that are

specified and made publicly-available by the units.

3.3 Functional Units
Below, we list some of the functional units that can be used

in Protean. We note that this is not an exhaustive list as

arbitrary functional units can be added to the system, as we

discuss in Section 3.5.

• Randomness unit: This unit produces unbiasable,

unpredictable and publicly-verifiable randomness [12,

21, 45].

• State unit: This unit exposes a key-value store that
provides serializability, which is guaranteed by ev-

ery blockchain system whether using Nakamoto [33],

107

PBFT [8, 27] or sharded consensus [28]. It verifies that

the state updates are correct (i.e., changes to a specific

key are signed by the owner of the key) and consistent

(i.e., decides whether a state update commits or aborts

based on the staleness of the state it changes [8, 28]).

• Execution unit: This unit is for executing arbi-

trary user-defined code and can be implemented by

Ethereum Virtual Machine (EVM) [47] or WebAssem-

bly (WASM) [4]. Code has to be deterministic for the

nodes to reach consensus on its execution. Execution

unit does not give any guarantees about the semantic

correctness of the executed code.

• Private-storage unit: This unit enables private-data
sharing with an auditable access-control mechanism.

It guarantees the availability of data as described in

Calypso [25].

The aforementioned functional units expose correct pro-

cesses that are run by a distributed set of nodes. For now, we

assume that nodes respect the adversarial model under which

the units are proven to be secure. We discuss the dynamic

evolution of functional unit memberships in Section 3.5.

3.4 Security Architecture
As we describe in Section 3.2, users orchestrate the execu-

tion of workflows by communicating with functional units

to execute transactions. Due to our design decision, users

can maliciously or inadvertently deviate from the correct

execution of a workflow. More specifically, a user can misbe-

have by (1) making transaction requests to functional units

that they are not supposed to, (2) not respecting the execu-

tion dependencies of transactions, and (3) submitting the

same transaction request to a functional unit many times to

perform a replay attack.

To address the first two cases, functional units run a scal-

able collective witnessing protocol, namely CoSi [46], to

collectively sign (cosign) the output of transactions. When

executing a workflow, users gather collective signatures from

each functional unit, and send the set of signatures and the

execution plan with every transaction request they make.

When a functional unit receives a request, it verifies the

collective signature on the execution plan, which is gener-

ated by the compiler unit, and checks that its identity is in

the execution plan. Then, based on the dependency graph

and the set of collective signatures, it verifies that the user

has already executed all of the transactions that the current

transaction depends on. If everything checks out, the func-

tional unit safely proceeds with executing the transaction

and returns a cosigned output to the user.

Although cosigning addresses the first two challenges,

users can still use a valid execution plan to launch a replay

attack on a functional unit by repeatedly submitting the same

transaction request. This way, a malicious user can either

carry out a denial-of-service attack, thereby making it hard

for other users to run their transactions, or try to bias the

output of a transaction (e.g., randomness generation).

To mitigate replay attacks, functional units maintain

caches that store the output of successfully executed trans-

actions. Each entry in the cache is a key-value pair, where

the key is a digest of the execution plan of the transaction

and the value is the output of the transaction. Upon receiv-

ing a transaction execution request, a functional unit first

computes the key and checks whether an entry for it already

exists in its cache. If so, it returns the corresponding value

without executing the transaction again. It is an open prob-

lem to devise a mechanism to keep the cache sizes under

control without disrupting the execution of applications.

3.5 Management and Governance
So far, we have assumed that nodes have static unit-

memberships and respect the threat model under which

their functional unit is proven to be secure. However, this is

an unrealistic assumption as having static unit-memberships

means that Protean cannot protect the security of a func-

tional unit if its nodes are compromised over time.

One potential solution to this problem is using Om-

niLedger’s shardingmechanism [28] to securely assign nodes

to functional units and periodically change their member-

ships to improve the long-term security of functional units.

More specifically, Protean can operate in fixed time inter-

vals, called epochs, during which the system configuration

does not change. Nodes can join the system by creating

Sybil-resistant identities and registering them. Then, at the

beginning of each epoch, an administrative workflow (sim-

ilar to Ethereum’s validator management contract [6]) can

run automatically to randomly assign the registered nodes

to functional units. Protean can use a system functional

unit called directory unit that uses skipchains [26, 35] to
store the identities of the nodes (i.e., network addresses and

cryptographic identities) and their functional-unit assign-

ments, thereby helping users with node and functional-unit

discovery.

Although the aforementioned mechanism periodically as-

signs nodes to functional units, it does not consider the

preferences of the nodes or whether the nodes have the

necessary resources to efficiently perform the specialized

function of their unit. For instance, if a lightweight mobile

client is assigned to a functional unit that performs heavy

cryptographic operations, it can degrade the performance

of the functional unit, and in turn of the overall system. It

is an open question to assign nodes to functional units that

best fit their capabilities without sacrificing the security of

functional units.

It is necessary for Protean to be able to update the set

of functional units and transactions over time so that it can

better serve the computational needs of users. To this end,

Protean needs a consensus mechanism to decide whether

a functional unit should be added to or removed from the

108

system. For instance, in order to introduce a new functional

unit, parties that are part of the consensus group could vet the

code and transactions of the functional unit. This decision-

making process is a part of blockchain governance, which
is an open problem with various proposed solutions [18].

One approach that can be used in Protean is the stake-

based governance [11, 38] where legitimate stakeholders

have voting power proportional to their stakes in the system.

4 Applications
In this section, we demonstrate how Protean can be used

for building decentralized applications. To this end, we first

present two different implementations of a decentralized lot-

tery. Later, we describe an e-voting application to highlight

the range of applications that Protean can support.

4.1 Decentralized Lotteries
As we mention in Section 2, smart-contract developers who

choose to implement their own PRNG can face serious se-

curity and correctness problems in their applications. We

present two different approaches for building secure decen-

tralized lotteries that use different functional units to gen-

erate unbiasable and unpredictable randomness. The first

approach uses the randomness unit that runs an SMPC-based

protocol [45]. The second approach uses the private-storage
unit [25] that generates randomness based on user inputs.

In the first approach, the smart-contract developer de-

fines three workflows: initialize, join, and reveal. The lottery
organizer runs initialize to setup the lottery by creating lot-

tery tickets and defining deadlines, such as when to end the

ticket purchase and finalize the lottery. Afterwards, anyone

who wants to participate in the lottery runs join to purchase

tickets by transferring the necessary funds to the lottery

account. Once the ticket purchase is over, any participant

can run reveal to parse randomness from the randomness

unit and transfer all the data to the execution unit to decide

the winner of the lottery. Since the randomness unit runs

a secure protocol that is guaranteed to generate unbiasable

and unpredictable randomness, our application avoids the

security and correctness problems of the Ethereum-based

lotteries that we highlight in Section 2.

In the second approach, we define the same workflows,

however, with different transactions as we use a different

set of functional units. More specifically, initialize works the
same as before; but join is used by the participants to commit

to their randomness. Each participant’s randomness is then

shared with the private-storage unit to guarantee that it will

eventually be revealed. Once the deadline for participating

in the lottery has passed, any authorized user can run reveal
to have the private-storage unit reveal the random numbers

that are submitted by the participants. The user sends these

random numbers to the execution unit to compute a final ran-

dom value using the input from the participants and pick the

winner. This approach also guarantees the unbiasability and

unpredictability of the generated randomness as it ensures:

(1) all commitments are cryptographically hidden from the

public until they can be revealed, and (2) all commitments

are eventually atomically revealed after the deadline; hence

avoiding a bias-via-abort [45].

4.2 E-Voting
A decentralized e-voting application can be created by defin-

ing three workflows: setup, vote, and tally. At setup, election
authorities perform the necessary steps to initialize the elec-

tion (e.g., creating ballots). Afterwards, voters run vote to
encrypt and cast their ballot. Once the voting period is over,

any user can run tally to decrypt the ballots and verify their

correctness, and compute the election results.

In order to implement a decentralized e-voting applica-

tion, we need to tackle two challenges: decentralizing the

process of tallying the votes and protecting the privacy of

voters. To this end, besides the more generic functional units

(e.g., state unit, execution unit), we need two new functional

units, namely encryption unit and shuffler unit. Encryption
unit runs a distributed key generation (DKG) algorithm [21]

to generate a collective private-public key pair such that the

private key can only be reconstructed and used by a thresh-

old of key shares, which are distributed to the nodes of the

functional unit. Voters submit their ballots to the system

after using a secure threshold-encryption protocol [42] to

encrypt them with the collective public key. A ballot can be

decrypted later only if a threshold of nodes combine their

secret shares. Shuffler unit runs a verifiable-shuffling proto-

col [34] that permutes and re-encrypts the ballots to remove

the link between the voter and their vote. It also generates

zero-knowledge proofs to prove the correctness of the per-

mutation. We note that the same e-voting application cannot

be securely implemented in Ethereum as some of the opera-

tions use secret data (e.g., private key) that cannot be put on
the blockchain where it is publicly visible [41].

5 Related Work
Numerous systems have been proposed to address the pri-

vacy and performance limitations of the smart contracts. We

discuss how these systems compare to Protean.

Hawk [29] supports privacy-preserving smart contracts by

executing contracts off-chain and verifying the correctness

of the execution on-chain via zero-knowledge proofs (ZKPs).

Hawk guarantees privacy at different levels as it hides the

details of monetary transactions from public and protects

the private inputs of a contract both from public and other

parties who participate in the contract. However, Hawk has

several limitations: First, Hawk is limited in the range of

applications it can support. Second, Hawk relies on a trusted

manager to not reveal the private inputs, which creates a

single point of compromise in the system. Finally, ZKPs have

109

high computational overhead that can degrade the overall

performance of the system.

Chainspace [7] is a smart-contract platform that employs

the well-studied sharding technique to achieve horizontal

scalability. Additionally, Chainspace uses a technique that

is similar to Hawk’s to support privacy-preserving smart

contracts. Users execute contracts on the client side and gen-

erate ZKPs to prove the correctness of the execution. Then,

consensus nodes check the proofs to validate the execution

without requiring access to data that is used during the ex-

ecution. As Chainspace offloads smart-contract execution

to the client side, it is users’ responsibility to both correctly

implement the algorithms that are required for their applica-

tions, which can be difficult and insecure, and generate the

ZKPs, which can be infeasible to do on users’ devices. In con-

trast, Protean adopts the opposite approach by providing

the users with services that they can use to build and execute

their applications within the system. Therefore, we argue

that Protean can support a wider class of applications than

Chainspace.

Arbitrum [23] argues that executing every contract on

every node limits the scalability and privacy of smart con-

tracts in Ethereum. Arbitrum addresses this shortcoming

by limiting contract execution to a set of nodes (managers)

that agree off-chain on the output of smart contract exe-

cution. If managers unanimously agree on the output of a

computation, they send a digital signature to the verifier (e.g.,
consensus protocol, smart contract) where the correctness

of execution is validated by verifying the signature. In case

the managers disagree, they participate in a refereed game,

which is arbitrated by the verifier, to determine who is right.

The drawback of Arbitrum is that it relies on financial incen-

tives to achieve its goals of scalability and privacy. Managers

that are not driven by financial incentives can continuously

trigger the refereed game to degrade the performance of the

system and/or reveal potentially sensitive data.

Ekiden [15] supports confidentiality-preserving smart con-

tracts by performing smart-contract computations off-chain

in a trusted execution environment (TEE). Executing smart

contracts in a TEE enables Ekiden to safely compute on pri-

vate data, prove the correctness of the execution, and support

a wider range of smart contracts. However, TEE in Ekiden is

a single point of compromise in terms of the integrity and

privacy of the smart contract execution, which conflicts with

the idea of decentralization.

Aspen [20] takes a different approach to sharding

blokchains by introducing service-oriented sharding. As-

pen builds on a multi-blockchain structure where each

blockchain exposes a different service and stores only the

transactions that belong to its service. In addition to high

scalability, Aspen also achieves extensibility by enabling

users to introduce new services without disrupting the oper-

ation of others. Aspen and Protean both move away from

monolithic architectures and have overlapping goals in terms

of performance and extensibility. However, Aspen does not

support general-purpose decentralized applications.

6 Discussion
In the previous sections, we have described how Protean

uses the existing decentralized protocols in functional units

to enable a wide range of applications that current smart-

contract systems cannot support. We now discuss the future

directions in designing new functional units to further enrich

the type of applications that Protean can support.

Accessing real-world data (e.g., result of a sports match,

stock prices) from an external source (e.g., the Internet) is one
of the biggest needs of smart contracts. Current solutions that

provide data feed to smart contracts, however, do not satisfy

our goal of full decentralization: Users have to trust either

one of the few data feed platforms [3, 5] or a system that

relies on trusted hardware to guarantee the authenticity of

data [49]. A decentralized data-feed system that can provide

provably-authentic data in a privacy-conscious manner (i.e.,
without leaking information about data requests) can form an

oracle unit in Protean to support new classes of applications,

such as prediction market and insurance market.

Due to Ethereum’s monolithic design, its execution envi-

ronment, EVM, has several limitations. For instance, crypto-

graphic operations on some widely-used elliptic curves are

either not supported natively in EVM; or they are supported

by precompiled contracts, but the financial cost of execut-

ing them is high [31, 37, 49]. We believe that new virtual

machines with specialized instruction-sets to perform a ded-

icated computation (e.g., verifying Ed25519 cryptographic

signatures) can create a more efficient and expressive alterna-

tive to EVM. These virtual machines can be used in Protean

to provide more functionalities with high efficiency.

Finally, an open question that is worth exploring is incen-

tivizing functional units to operate under the threat model

that they are proven to be secure (e.g., Byzantine setting).
Game-theoretic mechanisms [36] present a promising way

to mathematically enforce a certain fraction of the nodes in a

functional unit to act honestly. We envision an arbitrator unit
in Protean that implements this logic and assigns payoffs

to nodes. The challenge is finding payoffs that make sense

in the Byzantine setting with open participation.

7 Conclusion
We conjecture that the limitations of smart contracts stem

from their monolithic architecturewhere consensus and code

execution are tightly coupled. To address these limitations,

we have presented Protean, a general-purpose decentral-

ized computing platform that leverages modularity. Thanks

to its modular design, Protean can support a large class

of decentralized applications that are currently insecure or

impossible to implement with smart contracts.

110

References
[1] eosio | Blockchain software architecture.

[2] POA Network.

[3] Provable - Oraclize 2.0 - blockchain oracle service, enabling data-rich

smart contracts.

[4] WebAssembly.

[5] Augur: A Decentralized Oracle & Prediction Market Protocol.

[6] Ethereum’s Sharding Specification. 2018.

[7] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis.

Chainspace: A Sharded Smart Contracts Platform. In 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018, 2018.

[8] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D.

Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al. Hy-

perledger fabric: a distributed operating system for permissioned

blockchains. In Proceedings of the Thirteenth EuroSys Conference, Eu-
roSys 2018, Porto, Portugal, April 23-26, 2018, pages 30:1–30:15, 2018.

[9] E. Androulaki, C. Cachin, A. De Caro, and E. Kokoris-Kogias. Channels:

Horizontal Scaling and Confidentiality on Permissioned Blockchains.

In European Symposium on Research in Computer Security, pages 111–
131. Springer, 2018.

[10] N. Atzei, M. Bartoletti, and T. Cimoli. A Survey of Attacks on Ethereum

Smart Contracts SoK. In Proceedings of the 6th International Conference
on Principles of Security and Trust - Volume 10204, pages 164–186.

Springer-Verlag New York, Inc., 2017.

[11] M. Borge, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, and

B. Ford. Proof-of-Personhood: Redemocratizing Permissionless Cryp-

tocurrencies. In 1st IEEE Security and Privacy on the Blockchain, Apr.
2017.

[12] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantino-

ple: Practical Asynchronous Byzantine Agreement Using Cryptogra-

phy. In 19th ACM Symposium on Principles of Distributed Computing
(PODC), July 2000.

[13] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In 3rd
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Feb. 1999.

[14] D. L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[15] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,

A. Miller, and D. Song. Ekiden: A Platform for Confidentiality-

Preserving, Trustworthy, and Performant Smart Contract Execution.

arXiv preprint arXiv:1804.05141, 2018.
[16] CuriosMind. World’s Hottest Decentralized Lottery Powered by

Blockchain, Feb. 2018.

[17] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-

generation onion router. In 12th USENIX Security Symposium, Aug.

2004.

[18] F. Ehrsam. Blockchain Governance: Programming Our Future . 2017.

[19] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An Operating

System Architecture for Application-Level Resource Management. In

15th ACM Symposium on Operating Systems Principles (SOSP), Dec.
1995.

[20] A. E. Gencer, R. van Renesse, and E. G. Sirer. Short Paper: Service-

Oriented Sharding for Blockchains. Financial Cryptography and Data
Security 2017, 2017.

[21] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed

key generation for discrete-log based cryptosystems. In Eurocrypt,
volume 99, pages 295–310. Springer, 1999.

[22] M. Jung, P. Dalbhanjan, P. Chapman, and C. Kassen. Microservices on

AWS, 2017.

[23] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten.

Arbitrum: Scalable, private smart contracts. In Proceedings of the 27th
USENIX Conference on Security Symposium, pages 1353–1370. USENIX

Association, 2018.

[24] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The

Click Modular Router. ACM Trans. Comput. Syst., 18(3):263–297, Aug.
2000.

[25] E. Kokoris-Kogias, E. C. Alp, S. D. Siby, N. Gailly, L. Gasser, P. Jovanovic,

E. Syta, and B. Ford. CALYPSO: Auditable Sharing of Private Data

over Blockchains. Cryptology ePrint Archive, Report 2018/209, 2018.

[26] E. Kokoris-Kogias, L. Gasser, I. Khoffi, P. Jovanovic, N. Gailly, and

B. Ford. Managing Identities Using Blockchains and CoSi. Technical

report, 9th Workshop on Hot Topics in Privacy Enhancing Technolo-

gies (HotPETs 2016), 2016.

[27] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and

B. Ford. Enhancing Bitcoin Security and Performance with Strong

Consistency via Collective Signing. In Proceedings of the 25th USENIX
Conference on Security Symposium, 2016.

[28] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford.

OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding.

In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA, pages 583–598, 2018.

[29] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:

The blockchain model of cryptography and privacy-preserving smart

contracts. In 2016 IEEE symposium on security and privacy (SP), pages
839–858. IEEE, 2016.

[30] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena. Demystifying Incentives

in the Consensus Computer. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, pages
706–719. ACM, 2015.

[31] P. McCorry, S. F. Shahandashti, and F. Hao. A Smart Contract for

Boardroom Voting with Maximum Voter Privacy. In International
Conference on Financial Cryptography and Data Security, pages 357–
375, 2017.

[32] A. Miller and I. Bentov. Zero-collateral lotteries in Bitcoin and

Ethereum. In Security and Privacy Workshops (EuroS&PW), 2017 IEEE
European Symposium on, pages 4–13. IEEE, 2017.

[33] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[34] C. A. Neff. A verifiable secret shuffle and its application to e-voting.

In Proceedings of the 8th ACM conference on Computer and Communi-
cations Security, pages 116–125. ACM, 2001.

[35] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi,

J. Cappos, and B. Ford. CHAINIAC: Proactive Software-Update Trans-

parency via Collectively Signed Skipchains and Verified Builds. In 26th
USENIX Security Symposium (USENIX Security 17), pages 1271–1287.
USENIX Association, 2017.

[36] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, New York, NY, USA, 2007.

[37] T. Oberstein. EIP 665: Add precompiled contract for Ed25519 signature

verification, Mar. 2018.

[38] R. Red. What is on-chain cryptocurrency governance? Is it plutocratic?

2018.

[39] A. Reutov. Predicting Random Numbers in Ethereum Smart Contracts.

2018.

[40] A. Rowstron and P. Druschel. Storage management and caching in

PAST, a large-scale, persistent peer-to-peer storage utility. In 18th
ACM Symposium on Operating Systems Principles (SOSP), Oct. 2001.

[41] I. A. Seres. Implementing an e-voting protocol with blind signatures

on Ethereum. 2018.

[42] V. Shoup and R. Gennaro. Securing threshold cryptosystems against

chosen ciphertext attack. Advances in Cryptology — EUROCRYPT’98,
pages 1–16, 1998.

[43] J. Song. Attack on Pseudo-random number generator (PRNG) used in

1000 Guess, an Ethereum lottery game (CVE-2018–12454), July 2018.

[44] I. Stoica, R. T. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications.

In SIGCOMM, pages 149–160, 2001.

111

https://eos.io/
https://poa.network/
https://provable.xyz/
https://provable.xyz/
https://webassembly.org/
https://www.augur.net/
https://github.com/ethereum/sharding/blob/develop/docs/doc.md#validator-manager-contract-vmc
https://arxiv.org/pdf/1708.03778.pdf
https://arxiv.org/pdf/1801.10228v1.pdf
https://arxiv.org/pdf/1801.10228v1.pdf
https://arxiv.org/pdf/1801.10228v1.pdf
https://link.springer.com/chapter/10.1007/978-3-319-99073-6_6
https://link.springer.com/chapter/10.1007/978-3-319-99073-6_6
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://bford.info/pub/dec/pop-abs
http://bford.info/pub/dec/pop-abs
http://prosecco.gforge.inria.fr/ieee-blockchain2016/
http://link.springer.com/article/10.1007/s00145-005-0318-0
http://link.springer.com/article/10.1007/s00145-005-0318-0
http://link.springer.com/article/10.1007/s00145-005-0318-0
http://css.csail.mit.edu/6.824/2014/papers/castro-practicalbft.pdf
https://arxiv.org/pdf/1804.05141.pdf
https://arxiv.org/pdf/1804.05141.pdf
https://medium.com/@Curious_Mind/worlds-hottest-decentralized-lottery-powered-by-blockchain-90a35bad464a
https://medium.com/@Curious_Mind/worlds-hottest-decentralized-lottery-powered-by-blockchain-90a35bad464a
https://dl.acm.org/citation.cfm?id=1251375.1251396
https://dl.acm.org/citation.cfm?id=1251375.1251396
https://medium.com/@FEhrsam/blockchain-governance-programming-our-future-c3bfe30f2d74
https://dl.acm.org/citation.cfm?id=224076
https://dl.acm.org/citation.cfm?id=224076
http://fc17.ifca.ai/preproceedings/paper_73.pdf
http://fc17.ifca.ai/preproceedings/paper_73.pdf
https://link.springer.com/chapter/10.1007/3-540-48910-X_21
https://link.springer.com/chapter/10.1007/3-540-48910-X_21
https://docs.aws.amazon.com/aws-technical-content/latest/microservices-on-aws/microservices-on-aws.pdf
https://docs.aws.amazon.com/aws-technical-content/latest/microservices-on-aws/microservices-on-aws.pdf
http://doi.acm.org/10.1145/354871.354874
http://doi.acm.org/10.1145/354871.354874
https://eprint.iacr.org/2018/209
https://eprint.iacr.org/2018/209
https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/1_Managing_identities_bryan_ford_etc.pdf
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
https://eprint.iacr.org/2017/406.pdf
http://doi.acm.org/10.1145/2810103.2813659
http://doi.acm.org/10.1145/2810103.2813659
https://eprint.iacr.org/2017/110.pdf
https://eprint.iacr.org/2017/110.pdf
https://ieeexplore.ieee.org/document/7966964
https://ieeexplore.ieee.org/document/7966964
https://bitcoin.org/bitcoin.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
http://eips.ethereum.org/EIPS/eip-665
http://eips.ethereum.org/EIPS/eip-665
https://medium.com/@richardred/what-is-on-chain-cryptocurrency-governance-is-it-plutocratic-bfb407ef6f1
https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620
https://dl.acm.org/citation.cfm?id=502053
https://dl.acm.org/citation.cfm?id=502053
https://medium.com/coinmonks/implementing-an-e-voting-protocol-with-blind-signatures-on-ethereum-411e88af044a
https://medium.com/coinmonks/implementing-an-e-voting-protocol-with-blind-signatures-on-ethereum-411e88af044a
https://link.springer.com/chapter/10.1007/BFb0054113
https://link.springer.com/chapter/10.1007/BFb0054113
https://medium.com/coinmonks/attack-on-pseudo-random-number-generator-prng-used-in-1000-guess-an-ethereum-lottery-game-7b76655f953d
https://medium.com/coinmonks/attack-on-pseudo-random-number-generator-prng-used-in-1000-guess-an-ethereum-lottery-game-7b76655f953d
https://dl.acm.org/citation.cfm?id=383071

[45] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi,

M. J. Fischer, and B. Ford. Scalable Bias-Resistant Distributed Random-

ness. In 38th IEEE Symposium on Security and Privacy, May 2017.

[46] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,

N. Gailly, I. Khoffi, and B. Ford. Keeping Authorities “Honest or Bust”

with Decentralized Witness Cosigning. In 37th IEEE Symposium on
Security and Privacy, May 2016.

[47] G. Wood. Ethereum: A Secure Decentralised Generalised Transaction

Ledger. Ethereum Project Yellow Paper, 2014.
[48] M. Young, A. Tevanian, R. F. Rashid, D. B. Golub, J. L. Eppinger, J. Chew,

W. J. Bolosky, D. L. Black, and R. V. Baron. The Duality of Memory and

Communication in the Implementation of a Multiprocessor Operating

System. In Proceedings of the Eleventh ACM Symposium on Operating
System Principles, SOSP 1987, Stouffer Austin Hotel, Austin, Texas, USA,
November 8-11, 1987, pages 63–76, 1987.

[49] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town Crier: An

Authenticated Data Feed for Smart Contracts. In 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages
270–282, Nov. 2016.

[50] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubi-

atowicz. Tapestry: A Resilient Global-scale Overlay for Service Deploy-

ment. IEEE Journal on Selected Areas in Communications, 22(1):41–53,
Jan. 2004.

112

http://eprint.iacr.org/2016/1067
http://eprint.iacr.org/2016/1067
http://dedis.cs.yale.edu/dissent/papers/witness-abs
http://dedis.cs.yale.edu/dissent/papers/witness-abs
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1145/41457.37507
https://doi.org/10.1145/41457.37507
https://doi.org/10.1145/41457.37507
https://dl.acm.org/citation.cfm?id=2978326
https://dl.acm.org/citation.cfm?id=2978326
https://ieeexplore.ieee.org/document/1258114
https://ieeexplore.ieee.org/document/1258114

