Introduction to Differentiable Manifolds

$EPFL - Fall \ 2022$	F. Carocci, M. Cossarini
Exercise Series 12 - Exterior differentials,	Orientations, Integration on
Manifolds	2022 – 12 – 05

Exercise 12.1. Let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be the smooth map $F(\theta, \varphi) = ((\cos\varphi + 2)\cos\theta, (\cos\varphi + 2)\sin\theta, \sin\varphi)$. Let consider $\omega = ydz \wedge dx$. Compute $d\omega$ and $F^*\omega$ and verify by direct computation that $d(F^*\omega) = F^*d\omega$.

Exercise 12.2. Prove that given $\omega \in \Omega^k(\mathbb{R}^n)$ a k-form the Exterior derivative $d\omega = d(\sum_I \omega_I dx^I) := \sum_I d\omega_I \wedge dx^I$ has the following properties:

- (a) d is \mathbb{R} -linear
- (b) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^{\deg(\omega)}\omega \wedge d\eta$
- (c) $d \circ d = 0$
- (d) Given $F: U \to V$ a smooth map $d(F^*\omega) = F^* d\omega$

Exercise 12.3. Suppose that M is a smooth manifold which is the union of two orientable open sub-manifolds with connected intersections. Show that then M is orientable. Use this to prove that S^n is orientable.

Exercise 12.4. * Let M a smooth manifold. Show that TM and T^*M are always orientable manifolds.

Recall that a smooth covering map $\pi \colon E \to M$ is a smooth surjective morphism such that for each $p \in M$ there exists a open neighbourhood U in M with $\pi^{-1}(U) = \bigcup_{i=1}^{k} V_i$ with $\pi|_{V_i} \colon V_i \to U$ is a diffeomorphism.

The following two results explain how orientation behave with respect to smooth covering maps and give us criteria to show when a manifold is not orientable.

Theorem Let E be connected, oriented, smooth manifolds and $\pi: E \to M$ be a smooth normal covering map.¹ Then M is orientable if and only if the action of $\operatorname{Aut}_{\pi}(E)$ is orientation preserving

Exercise 12.5. * Using the above theorem, prove that \mathbb{RP}^n is orientable if and only if n is odd.

Hint Consider $q :: S^n \to \mathbb{RP}^n$ the quotient map. Prove that this is a normal smooth covering map. Then prove that the only non trivial automorphism of q is the antipodal map $x \mapsto -x$ which is orientation preserving if and only if n is odd.

¹For us normal will just means that the group $\operatorname{Aut}_{\pi}(E)$ of automorphism of E commuting with π acts transitively on the fiber.