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Exercise 6.1. Consider the n-torus T" = R"/Z" and let 7 : R™ — T" be the
projection map.

(a) Give T™ a natural smooth structure so that 7 is a local diffeomorphism.

Solution. We have already seen in a previous exercise that 7 is locally injec-
tive. This means that R? is covered by open sets U such that the restriction
7|l : U — T™ is injective. We take these maps ¢ = 7|y as local parametriza-
tions of T™. Their inverses form a smooth atlas for T". (The transition maps
are locally translations, hence smooth.) O

(b) Show that a map f : T"™ — M (where M is a smooth manifold) is smooth if
and only if the composite f o 7 is smooth.

Solution. If f is C¥, it is clear that f o7 is C*.

Now suppose f o is C¥. To show that f is C¥, it suffices to show that fo ¢
is C* for all parametrizations ¢ = |y as above. And indeed, by decomposing
¢ = wouy, where vy : U — R is the inclusion map, we see that the map fo¢
is C* because fo¢ = fomouy and both fox and v are C*. O

(c) Show that T™ is diffeomorphic to the product of n copies of the circle S.

Solution. Recall the homeomorpism T! = R/Z — S! C R? that sends [t] —
(cos(27t), sin(27t)). We will construct an n-dimensional version of it.

For this exercise it is convenient to define the torus as T"™ := R"/27Z". We
define a map f : R" — (S!)” C R?" that sends

(t)o<i<n > (cos 9, sint?, costt, sintt,...).

Since the map f is 2nZ"-periodic, by the previous part of the exercise it passes
to the quotient giving a smooth map f : T" — (S!)" that satisfies f = f o 7.

Note that map f is an immersion. To prove this, since 7 is a surjective, it
suffices to check that the map to f =0 fonm : R® — R?" is an immersion,
where ¢ is the inclusion map (S')” — R?". To see that ¢ o f is an immersion
we note that the n vectors

Ty(eo f)(e;) = (0,...,0,—sint’, cost’,0,...,0)

are linearly independent, since they are nonzero and contained in different
coordinate planes.

Since f: T" — (S!)™ is an immersion between n-dimensional manifolds, it
follows that f is a local diffeomorphism, and in particular it is an open map.
Since in addition f is bijective, it is a diffeomorphism. O

Exercise 6.2. If S is an embedded submanifold of M, show that there is a unique
topology and smooth structure on .S such that the inclusion map S — M is an
embedding.

Solution. Recall that gives S Ly M an embedding we have defined a smooth man-
ifold structure on M as follows: we endow S with the subspace topology and we
define smooth charts via the Slice property for embedded submanifold (Notes: Propo-
sition 3.3.2, Lee’s book Theorem 5.8). This means that smooth charts for S are given
by taking (U NS, ¢|) for (U, ¢) a smooth chart for M such that o(UNS) C p(U) is
given by {q € p(U) | 2F*1(¢q) = --- = 2"(¢q) = 0} where k = dim S and n = dim M.

We want to show that this is the unique smooth structure on S for which j is
indeed an embedding.
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Recall that by the initial property of embedded submanifolds (Proposition 3.3.3+
Proposition 3.3.4 Notes; Theorem 3.29+Corollary 3.30 Lee’s book), if F': N — M is
a smooth map whose image is contained in S then F': N — S is smooth.

Suppose there exists some other topology and smooth structure on S making it

into an embedded submanifold. Let us denote by S s M the same subspace inclusion
but endowed with the different structure. By definition of emdedding, j is smooth.
Moreover, we have that }(g) = S and thus by the initial property recalled above
IR S — S is also smooth. For each point p, consider

Dyj: TS — T,M.

Since the image of S is contained in S we have a factorisation

7,8 2% 1,8 29 1M

Since the composition is injective by definition of embedding, so is the first linear
map. This means that j: S — § is a smooth immersion. But a smooth immersion
which is bijective is a diffeomorphism, so the smooth structure on S was the standard
smooth structure on embedded submanifolds.

g

Exercise 6.3. For a subset S of a smooth manifold M, show that the following are
equivalent:

(a) S is a closed embedded k-submanifold of M.
(b) For each point p € M there exists a chart (V, ¢) that is k-sliced by S, i.e. we
have

SNV ={qeV:¢fq) =---=¢"(q) =0}.

Solution. (a) = (b) is the slice property for embedded submanifolds (Notes: Propo-
sition 3.3.2, Lee’s book Theorem 5.8).

Viceversa. First notice that since S is a subspace of a manifold it is automatically
Haursdorff and second countable. We now define a smooth atlas on S as follow: let
m: RZO,...,mnfl — Rio,.. «—1 the standard projection. Consider the composition:

T

va$¢wmvnwm0cR@Mﬂ4lR§mﬁ+

Remember that the following notation ¢* = zF o ¢ is being used.

Now notice that by the slice property ¢(SNV) is a open inside 7! (R¥). Moreover
since the standard projection is open (see next solution for details) Top(SNV) C R*
is open. Thus we have a continuos bijection into a open in R¥

SAV ™% U C R*.

This is in fact a homeomorphism since the inverse is given by (7 o ¢)~!(x) =
¢~ (2%, ...,2¥1,0,...,0) which is continuos because composition of the standard
immersion j: R¥ — R™ and ¢! which is continuos since it is a chart of M.

This prove that the the collection of (Vs :=V NS, ¢g := mo ) for (V,¢) charts of
a smooth atlas for M define a k-topological manifold structure on S.

To conclude we want to check that these charts are in fact smoothly compatible
and so define a smooth structure on S. If (Vs, ¢g) and (V{, ¢'s) are two charts, the
transition function is given by

Pso(ps)t=modlogT o]
which is smooth since composition of smooth maps. O

Exercise 6.4. Show that every submersion is an open map.
2
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Solution. Let F': M — N a submersion. Let us start by argue that we can reduce
the problem to proving that the standard projection RZO,...,a:"*l 5 R’;Q...,xk*l is open.

Let W C M be a open subset and suppose we know the standard projection is
open. By the costant rank theorem we can find charts (U;, ¢;), (Vi,¥;) covering M
and N respectively such that

Fpi o) SR™ = 4i(Vi) CR”

is the standard projection.

Then we have ng(cpz(W N U;)) is open for each i; in particular, since ¢;,; are
homeomorphism onto their images and thus in particular open maps, F(U; N W) =
Pt oFij(w(Ui NW)) is open. Since W = |JW NU; and thus F(W) = J F(WNU;)

(2
the latter is open because union of opens.

It remains to prove that the standard projection is open. Let us write R" =
R" % x R*. We can choose as a base for the standard topology of R” the family of
opens of the form U x V for U € R" ¥ and V C R¥ are open sets. For opens in the
basis the statement follows from the definition of the projection map. If W C R" is
any open set, then by definition of base for a topology this can be covered by opens
of the form U x V. This conclude the argument. O

Exercise 6.5. If M is a smooth manifold and 7 : N — M is a covering map, show
that IV has a unique smooth structure such that 7 is a local diffeomorphism.

Solution. Recall that a map of topological manifolds 7 : N — M is a covering map if
it is continuos, surjective and every point p in M has a neighbourhood U such that
every connected component V; of #~1(U) = | |V; is mapped homeomorphically to U.

Fix a smooth atlas on M {U;, p;} such that each connected component V;j of
7~ YU;) = || Vij is mapped homeomorphically to U;.

We can define a smooth atlas on N taking as charts (Vj;,v;; := ¢; o m;;) where
m;; simply denote the restriction of m to the open V;;. These are homeomorphism
into open subset of R™ by definition of covering map. If (Vij,vs;), (Vii, ¥ri) are two
charts (notice that necessarily i # k otherwise the intersection is empty and there is
nothing to check) then

wijodjk_ll = 90i|Uir‘|Ukoﬂ-ij’Vijmvklo(ﬂkl’%jﬁvkl)710(¢k‘UimUk)71 = Spi’UimUko(SOk|UimUk)il

which is smooth since {U;, ;} are a smooth atlas for M. With this smooth struc-
ture, 7 : N — M is a local diffeomorphism since, in local charts 7T|1£:j is just the
identity between two opens of R,

Let us argue that this is the unique smooth structure on N making 7 into a local
diffeomorphism. Suppose there exist another smooth structure such that 7: N — M
is a local diffeomorphism. Then there exists a smooth atlas {W;, ¢;} of N such that
w: Wi — n(W;) is a diffeomorphism. Notice that since 7 is surjective and 7|y, is
open, the 7(W;) are a open cover of M. Up to shrinking the W; we can assume that
m(W;) C U; and so W; C Vi;j for some j. To conclude we need to show that v;, ¢;
are smoothly compatible. By assumption 7 is a local diffeomorphism with respect to
these smooth structure, i.e: p; omo qs;l and @; omo 1), L are diffeomorphisms. But

giovi = (piomogit)o(piomoy; )7
and the right hand side is clearly smooth since is composition of smooth maps. [

Exercise 6.6. Let . : N — M be a smooth embedding of smooth manifolds.

(a) If ¢ is a closed map, show that for every smooth function f € C°°(N) there
exists a smooth function g € C*°(M) such that f = go .

(b) Is this still true if we omit the assumption that ¢ is a closed map ?
3
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Solution. (a) In Lecture 3 we proved, using partitions of unity, the following Ex-
tension Lemma:
Lemma: Let M be a smooth manifold, A € M a closed subset, and
f: A — R asmooth functio then there exists a smooth function f: M — R
such that f|A = f.

The idea was to define f = > pea np(x) fp(z) for {n,(z)} a partition of unit
subordinate to the open cover of M given by the opens {W), M \ A}.

To solve (a) we want to prove that given ¢ : N — M a closed embedded
submanifold and f: N — R a smooth function with respect the unique smooth
structure on N such that ¢ is an embedding, then f is also smooth in the sense
we just recalled.

So we have to show that we can define for each p € M a open neighbourhood
Wp of p in M and a smooth function fp: W, — R such that fp]Nme =
fInnw,. Once this is done, we can apply the Extension Lemma.

The idea is once again to use the slice chart Lemma. Since ¢: N — M is
an embedding, for each p € N there exists a coordinate chart (U, ¢) of M
centered at p such that

o(U N N) 229, 417

is the standard embedding R — R™ defined by (z!,...,2") — (2!,...,2",0...,0).
In particular we can define smooth retractions U = UNN (i.e. mor = idyny)
where 7 := (¢|ynn) "t o T 0 ¢ with m,: R™ — R™ the standard projection
(', 2™) = (2, ..., 2").

Then we define W), := U and

}; = f‘UﬁN oTl.

The extension is smooth because composition of smooth function and clearly
restrict to f on N N U since m ot = idynn-

(b) If the embedding is not closed, we can still extend the function to a open
N C V C M using the slice chart lemma and taking V' = J W), but not
necessarily to all of M. In fact, if IV is itself open it might well be that it is
already the biggest domain in which the function f is smooth. (See Exercise
1 in Problem sheet 3)

U
Exercise 6.7 (To hand in). (a) Show that the map f : P? — R3 defined by
1
f([z,y,2]) = m(yz,xz,xy).

is smooth, and has injective differential except at 6 points.
(b) Show that the map g : P2 — R* defined by

1
= m(yz,m,my,ﬁ - 2%)

is a smooth embedding.

9([z,y, 2])

Exercise 6.8. *

(a) A smooth map f: M — N is transverse to a closed embedded submanifold
S C N if for all points p € f~1(S) we have TtpyS + Img(Tyf) = Ty N.
If this happens, show that f~1(S) is a closed embedded submanifold of M.
What is its dimension ? What is its tangent space 7

et us recall that being A just a subset in this statement f smooth means that for each p € A
there exists a open neighbourhood W, of p in M and a smooth function f,: W, — R such that
folanw, = flanw,

4
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(b)

Two smooth maps fy : My — N and f; : M; — N are transverse to each
other if for any pair of points py € My, p1 € My such that fo(po) = fi(p1) =:
q € N we have Img(T), fo) +Img(T), f1) = T,N. If this happens, prove that
the set

S :={(po,p1) € Mo x M | fo(po) = f1(p1)}
is a closed submanifold of My x M;. What is its dimension ?

Solution. (a) This is Theorem 6.30 in Lee’s book (pag 144). We sketch the argu-

ment.

Since S is a submanifold, given any = € f~1(S) we can find a chart (U, ¢)
for N around f(z) such that (SNU) = {p € U | ¢**1(p) = --- = o"(p) = 0},
i.e. there exist a smooth fuction ¢ = mo ¢: U — R® — R™* such that
(SnU) = g7'(0). Let us consider g o flp-1y: f7HU) — R™~*. Then
FHS)N f~Y(U) is given by (go f)~1(0), so to conclude it is enough to prove
that 0 is a reqular value for (g o f) and the result follows from the regular
Level set Theorem we proved in Lecture 5 (Theorem 3.5.2 Notes/ Theorem
5.12 Lee’s book).

The value 0 is regular for g since it is the composition of a diffeomorphism
and the standard projection, so given z € ToR" ¥ exist v € T ()N such that
D¢(x)g(v) = 2. The assumption of transversality tell us that we can write
v =g+ D, f(w) for vg € T¢(x)S and w € T, M.

But since g|(gnr) is constant Dy(z)g(vo) = 0 so 2 = Dy(g o f)(w).

The argument also show that the codimension of f~1(S) in M is equal to
the codimension of S is V.

Finally, by Exercise 5.2 the tanget space

T, f~1(S) = Ker(Tof~L(U) L TyRF)

Consider the smooth map F': My x M; M N x N. There is a smooth

embedding N < N x N defined by ¢ — (¢,q). Then S = F~!(N) and the
transversality of fo and f; translates into the transversaliy of F' and NN in the
sense of point (a).

O



