Introduction to Differentiable Manifolds	
$\mathrm{EPFL}-\mathrm{Fall}\ 2022$	F. Carocci, M. Cossarini
Solutions Series 7 - Vector bundles	2021 - 11 - 20

Exercise 7.1. Show that the Moëbious bundle as defined in the lecture is a smooth vector bundle on S^1 (Exhibit local trivialization and compute the transition functions.)

Solution. The Mobius bundle is defined by $M := \mathbb{R} \times \mathbb{R} / \sim \cong M := [0,1] \times \mathbb{R} / \sim$ for $(x,y) \sim (x+n,-y)$ with $n \in \mathbb{Z}$

First we show that M is a smooth manifold. M is second countable because quotient of second countable, it is Hausdorff because quotient of a Hausdorff space by a discrete action. Define charts φ_1, φ_2 by restricting $\pi \colon \mathbb{R}^2 \to M$ to opens on which the quotient map is injective; e.g $V_1 = [0, 1), V_2 = (0, 1]$, The transition function of the two charts,

$$\varphi_2 \circ \varphi_1^{-1} : \varphi_1(V_1 \cap V_2) \to \varphi_2(V_1 \cap V_2),$$

is given by

$$\varphi_2 \circ \varphi_1^{-1}(x,t) = \begin{cases} (x,t) & x \in (0,\frac{1}{2}) \\ (x-1,-t) & x \in (\frac{1}{2},1) \end{cases}$$

So the two charts are smoothly compatible. We conclude M is a smooth manifold.

We show that M is a smooth vector bundle. Let $\pi: M \to S^1$, $\pi([(x,t)]) := [x]$.

Then, using the notation from the Example, over $U_1 \subset S^1$ we have the local trivialization

$$\Phi_1: \pi^{-1}(U_1) \to U_1 \times \mathbb{R}: [(x,t)] \mapsto ([x],t),$$

which is a diffeomorphism, because it is the composition $(\nu_1^{-1} \times id_{\mathbb{R}}) \circ \varphi_1$ and both φ_1 and ν_1 are (trivially) diffeomorphisms, since they are smooth charts. (Note $\pi^{-1}(U_i) = V_i$.) Clearly Φ_1 is also a linear map on each fibre if we define the vector space structure on .

Similarly, over U_2 we define a local trivialization

$$\Phi_2: \pi^{-1}(U_2) \to U_2 \times \mathbb{R}: [(x,t)] \mapsto \begin{cases} ([x],t) & x \in [0,\frac{1}{2})\\ ([x],-t) & x \in (\frac{1}{2},1] \end{cases},$$

which is a diffeomorphism, because it is the composition $(\nu_2^{-1} \times id_{\mathbb{R}}) \circ \varphi_2$. Moreover, Φ_2 is linear on each fibre.

Exercise 7.2. Show that the tangent bundle TS^1 is trivial.

Solution. Since \mathbb{S}^1 is diffeomorphic to \mathbb{T}^1 , it suffices to show that the tangent bundle of the *n*-torus \mathbb{T}^n is trivial.

We denote $\kappa : \mathbb{R}^n \to \mathbb{T}^n$ the quotient map, since the letter π is now used for the projection $\pi : \mathbb{T}\mathbb{T}^n \to \mathbb{T}^n$.

Recall that there is an inverse atlas of \mathbb{T}^n consisting of the parametrizations $\phi = \kappa|_{\widetilde{U}} : \widetilde{U} \to U \subseteq \mathbb{T}^n$, where $\widetilde{U} \subseteq \mathbb{R}^n$ is any open set where κ is injective and $U = \kappa(\widetilde{U})$.

Each such parametrization ϕ of \mathbb{T}^n induces a parametrization $\Phi : \widetilde{U} \times \mathbb{R}^n \to \pi^{-1}U$ of $\mathbb{T}\mathbb{T}^n$ that sends $(x, v) \mapsto (\phi_{\widetilde{U}}(x), \sum_i v^i \left. \frac{\partial}{\partial (\phi^{-1})^i} \right|_p)$. Note here that ϕ^{-1} is a chart of \mathbb{T}^n . The parametrizations Φ of this kind form an atlas of $\mathbb{T}\mathbb{T}^n$, which defines the smooth structure on $\mathbb{T}\mathbb{T}^n$.

We define a frame of $T\mathbb{T}^n$ consisting of n vector fields E^i defined as follows. For each parametrization $\phi: \widetilde{U} \to U$ as above, we let

$$E^{i}(p) = \Phi(\phi^{-1}(p), e_{i}) \quad \text{for all } p \in U.$$

This formula defines $E^i|_U$. Let us check that E^i is well defined (i.e. that the formula agrees on an intersection $U \cap V$ of images of two parametrizations $\phi : \widetilde{U} \to U$, $\psi : \widetilde{V} \to V$. For this, recall that the transition map $\psi^{-1} \circ \phi$ between the parametrizations ϕ, ψ of \mathbb{T}^n is locally a translation. Therefore the transition map between the parametrizations Φ, Ψ of \mathbb{T}^n is

$$\Psi^{-1} \circ \Phi(x, v) = (\psi^{-1} \circ \phi(x), \mathcal{D}_{\phi(x)}(\psi^{-1} \circ \phi)(v)) = (\psi^{-1} \circ \phi(x), v)$$

since the differential of a translation is the identity map. Equivalently, we have $\Phi(x,v) = \Psi(y,v)$ if $\phi(x) = \psi(y)$. In particular, for a point $x \in U \cap V$, putting $x = \phi^{-1}(p)$ and $y = \psi^{-1}(p)$, we have

$$\Phi(\phi^{-1}(p), e_i) = \Phi(x, y) = \Psi(y, e_i) = \Psi(\psi^{-1}(p), e_i),$$

as needed to show that E_i is well defined.

The vector fields E^i are clearly smooth because they are smooth on each open set U as above, since the maps Φ and ϕ^{-1} are smooth. The vector fields E^i are also linearly independent at each point $p = \phi(x) \in \mathbb{T}^n$, since the vectors e_i are linearly independent. Therefore the vectors E_i constitute a frame of TTT^n , defined globally (i.e. on the whole torus \mathbb{T}^n). We conclude that that the tangent bundle $T\mathbb{T}^n$ is trivial.

Exercise 7.3 (Properties of smooth vector fields). Let M be a smooth manifold and let $X: M \to TM$ be a vector field. Show that the following are equivalent:

- (a) X is a smooth vector field.
- (b) The component functions of X are smooth with respect to all charts of one particular smooth atlas of M.
- (c) For any smooth function $f: U \to \mathbb{R}$ on an open set $U \subset M$, the function $Xf: U \to \mathbb{R}$ defined by $Xf(p) := X_p(f)$ is smooth.

Solution. Let (M, \mathcal{A}) be a smooth manifold and X a vector field. Recall that we say that X is a smooth vector field if the component functions of X are smooth for any chart $(U, \varphi) \in \mathcal{A}$. The component functions w.r.t (U, φ) were defined as the functions $X^i : U \to \mathbb{R}$ such that

$$X_p = \sum_i X^i(p) \left. \frac{\partial}{\partial \varphi^i} \right|_p, \quad p \in U.$$

 $(a) \Rightarrow (b)$ is clear.

 $(b) \Rightarrow (a)$ Let $\mathcal{A}' \subset \mathcal{A}$ and suppose the component functions are smooth wrt all $(U, \varphi) \in \mathcal{A}'$. Let $(V, \psi) \in \mathcal{A}$. We write

$$X_p = \sum_i \widetilde{X}^i(p) \left. \frac{\partial}{\partial \psi^i} \right|_p, \quad p \in V$$

where \widetilde{X}^i are the component functions of X wrt (V, ψ) . To show that the \widetilde{X}^i are smooth on V it suffices to show that they are smooth in a neighborhood of every point of V. So let $p \in V$, let $(U, \varphi) \in \mathcal{A}'$ be a chart containing p and let X^i be the component functions of X wrt (U, φ) . Then from the change of coordinates formula it follows that (Exercise 3.iii from last week)

$$\widetilde{X}^{i}(q) = \sum_{j} \left(\left. \frac{\partial}{\partial \varphi^{j}} \right|_{q} \psi^{i} \right) X^{j}(q), \quad q \in U \cap V$$

and we conclude that \widetilde{X}^i is smooth on $U \cap V$, i = 1, ..., n.

 $(c) \Rightarrow (a)$ Let $(U, \varphi) \in \mathcal{A}$. Applying X to one of the components of φ yields $X\varphi^i = X^i$, which is smooth by hypothesis, i.e. the component functions of X wrt (U, φ) are smooth.

 $(a) \Rightarrow (c)$ Conversely, suppose X is a smooth vector field, let $f \in \mathcal{C}^{\infty}(U)$ for an open set $U \subset M$. To check that Xf is smooth, it suffices to check that it is smooth in a neighborhood of every point of U. Given $p \in U$, let (W, φ) be a smooth chart containing p and satisfying $W \subset U$. Then on W we can write

$$Xf(q) = \sum_{i} X^{i}(q) \left. \frac{\partial}{\partial \varphi^{i}} \right|_{q} f$$

Then Xf is smooth on W since the component function of X are smooth by hypothesis and f is smooth (so in particular $\frac{\partial}{\partial \varphi^i}\Big|_q f = \frac{\partial (f \circ \varphi^{-1})}{\partial x^i}\Big|_{\varphi(q)}$ is smooth as a function of $q \in W$). \Box

Exercise 7.4. (To hand in) Show that there is a smooth vector field on S^2 which vanishes at exactly one point.

Hint: Try using stereographic projection and consider one of the coordinate vector fields.

Exercise 7.5 (Transition functions and vector bundles). (a) Let $E \xrightarrow{\pi} M$ be a smooth vector bundle of rank k. Suppose that $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of M; and for each α we are given a smooth local trivialization

$$\Phi_{\alpha} \colon \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^k.$$

For each α, β , let

$$\tau_{\alpha\beta}\colon U_{\alpha}\cap U_{\beta}\to \mathrm{GL}(k,\mathbb{R})$$

¹ be the transition function defined by $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$. Show that the following identity is satisfied for all α, β, γ

$$\tau_{\alpha\beta} \circ \tau_{\beta\gamma} = \tau_{\alpha\gamma}$$

This is called the *cocycle condition* (The juxtaposition on the left-hand side represents matrix multiplication.)

(b) Suppose that $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of a smooth manifold M and that for each α, β , we are given smooth maps $\tau_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k, \mathbb{R})$ satisfying the identity above. Then there exists a smooth vector bundle $E \xrightarrow{\pi} M$ with local trivializations $\Phi_{\alpha} \colon \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ and transition functions $\tau_{\alpha\beta}$

Solution. (a) Let us denote by $V = U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Then simply using the definition $\tau_{\alpha\beta} = \Phi_{\alpha}|_{U_{\alpha}\cap U_{\beta}} \circ (\Phi_{\beta}|_{U_{\alpha}\cap U_{\beta}})^{-1}$ we get

$$\tau_{\alpha\beta}|_V \circ \tau_{\beta\gamma}|_V = \Phi_{\alpha}|_V \circ (\Phi_{\beta}|_V)^{-1} \circ \Phi_{\beta}|_V \circ (\Phi_{\gamma}|_V)^{-1} = \tau_{\alpha\gamma}|_V$$

(b) Let us define $E = \bigsqcup_{\alpha} \{\alpha\} \times U_{\alpha} \times \mathbb{R}^k / \sim$ where

$$(\alpha, p, v) \cong (\beta, q, w) \Leftrightarrow q = p, \ w = \tau_{\alpha\beta}(p)(v)$$

Since $\tau_{\alpha\beta}$ satisfy the cocycle condition, this is an equivalence relation. $\pi: E \to$ is defined by $\pi([(\alpha, p, v)]) = p$. Then $\Phi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ defined by $\Phi_{\alpha}([(\alpha, p, v)]) = (p, v)$ is bijective and the restriction to a point gives a linear isomorphism $\pi^{-1}(p) = \{[(\alpha, p, v)] | v \in \mathbb{R}^{k}\} \to \mathbb{R}^{k}$. Finally, if $U_{\alpha} \cap U_{\beta} \neq \emptyset$ the transition function

$$\Phi_{\alpha} \circ \Phi_{\beta}^{-} 1 \colon U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{k} \to U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{k}$$

is given by $(p, v) \to (p, \tau_{\alpha\beta}(p)(v))$. By the Vector bundle chart Lemma (Lemma 10.6 Lee's book), E is a vector bundle on M.

Let us say again in words how one gets E: for any vector bundle $E \xrightarrow{\pi} M$ there exist a *trivializing cover*, i.e. a cover $\{U_{\alpha}\}_{\alpha \in A}$ such that

$$E|_{U_{\alpha}} = \pi^{-1}(U_{\alpha}) \xrightarrow{\Phi_{\alpha}} U_{\alpha} \times \mathbb{R}^{k}$$

¹for each point $p \tau_{\alpha\beta}(p)$ is a matrix

whit Φ_{α} a diffeomorphism. The transition functions $\tau_{\alpha\beta}$ tell us how these trivial vector bundle are glued along the intersections (the vector bundle is trivial on all of M if all the $\tau_{\alpha\beta}(p) = Id_{E_p}$. The cocycle condition is telling us that the gluing has to be consistent on triple intersections.

This exercise is showing how to built up E from the local trivialization and the gluing data.