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Exercise 8.1. We have seen that given X ∈ X(M) a vector field we have a an

R-linear derivation

X : C∞(M) → C∞(M)

defined by

X(f) : M → R, X(f)(p) = Xpf

where Xp ∈ TpM is the value of the vector field at p and Xpf is given as described

in Lecture 3.

(a) Show that the Lie bracket [X,Y ] defined by [X,Y ]f = X(Y (f)) − Y (X(f))

is still a R-linear derivation [X,Y ] : C∞(M) → C∞(M).

(b) Suppose that we have coordinate expressions X =
∑

iX
i ∂
∂xi

, Y =
∑

j Y
j ∂
∂xj

.

Prove that the Lie bracket is given in coordinates by

[X,Y ] =
∑
i

∑
j

(Xi∂Y
j

∂xi
− Y i∂X

j

∂xi
)
∂

∂xj

(This exercise is extremely painful, I know! But you do it once in your life

and never again.. As ugly as they are, vector fields and their brackets is what

allow us to talk about direction derivatives on a manifold and to understand

when two direction derivatives commute and when they don’t! Notice that

the Lie bracket of two coordinatye vector fields in Rn is always 0)

Solution. (a) To show that [X,Y ] is a R-linear derivation, we need to check that

it is indeed R-linear and it satisfies the product rule, that is

[X,Y ](λf + g) = λ[X,Y ](f) + [X,Y ](g)

and

[X,Y ](fg) = f [X,Y ](g) + g[X,Y ](f)

The linearity is straightful:

[X,Y ](λf + g) = (XY − Y X)(λf + g) = XY (λf + g)− Y X(λf + g)

= X(λY (f) + Y (g))− Y (λX(f) +X(g))

= λXY (f) +XY (g)− λY X(f) + Y X(g)

= λ(XY − Y X)(f) + (XY − Y X)(g) = λ[X,Y ](f) + [X,Y ](g)

where we used the linearity of X and Y .

For the product rule we have

[X,Y ](fg) = (XY − Y X)(fg) = XY (fg)− Y X(fg)

= X(fY (g) + gY (f))− Y (fX(g) + gX(f))

= X(fY (g)) +X(gY (f))− Y (fX(g))− Y (gX(f))

= X(f)Y (g) + fXY (g) +X(g)Y (f) + gXY (f)

− Y (f)X(g)− fY X(g)− Y (g)X(f)− gY X(f)

= f(XY − Y X)(g) + g(XY − Y X)(f)

= f [X,Y ](g) + g[X,Y ](f)

hence the Lie bracket of two vector field is a derivation (a vector field).
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(b) LetX =
∑

iX
i ∂
∂xi

and Y =
∑

j X
j ∂
∂xj

be coordinate expressions of our vector

field in a coordinate system (U,φ = (x1, · · · , xn)) for M . Let us compute the

vector field [X,Y ] in coordinates.

[X,Y ](f) =

= XY (f)− Y X(f)

= (
∑
i

Xi ∂

∂xi
)(
∑
j

Y j ∂

∂xj
)(f)− (

∑
j

Y j ∂

∂xj
)(
∑
i

Xi ∂

∂xi
)(f)

= (
∑
i

Xi ∂

∂xi
)(
∑
j

Y j ∂

∂xj
(f))− (

∑
j

Y j ∂

∂xj
)(
∑
i

Xi ∂

∂xi
(f))

=
∑
i,j

Xi ∂

∂xi
(Y j ∂

∂xj
(f))−

∑
i,j

Y j ∂

∂xj
(Xi ∂

∂xi
(f))

=
∑
i,j

(XiY j ∂2

∂xi∂xj
(f) +Xi ∂

∂xi
(Y j)

∂

∂xj
(f))

−
∑
i,j

(XiY j ∂2

∂xi∂xj
(f) + Y j ∂

∂xj
(Xi)

∂

∂xi
(f))

=
∑
i,j

Xi ∂

∂xi
(Y j)

∂

∂xj
(f)−

∑
i,j

Y j ∂

∂xj
(Xi)

∂

∂xi
(f)

=
∑
i,j

Xi ∂

∂xi
(Y j)

∂

∂xj
(f)−

∑
j,i

Y i ∂

∂xi
(Xj)

∂

∂xj
(f)

=
∑
i,j

(Xi ∂

∂xi
(Y j)− Y i ∂

∂xi
(Xj))

∂

∂xj
(f)

which is what we want.

Where, in the fifth equality, we used the linearity and in the sixth the product

rule. Finally in the 8th equality we just changed i with j in the second term

and then regrouped in one big sum.

□

Exercise 8.2. Let f : M → N be a smooth map. A vector field X ∈ X(M) is

f -related to a vector field Y ∈ X(N) if Dpf(Xp) = Yf(p) for all p ∈M .

(a) X is f -related to Y if and only if Xp(h ◦ f) = Yf(p)(h) for all functions

h ∈ C∞(N,R) and all points p ∈M .

Solution. By definition of Dpf we have (Dpf(Xp))(h) = Xp(h ◦ f) for all

functions h ∈ C∞(M). Thus

X is f -related to Y at p ⇐⇒ Yf(p) = Dpf(Xp)

⇐⇒ Yf(p)(h) = (Dpf(Xp))(h) ∀h ∈ C∞(N)

⇐⇒ Yf(p)(h) = Xp(h ◦ f) ∀h ∈ C∞(N)

□

(b) If X is f -related to Y and γ is an integral curve of X, show that f ◦ γ is an

integral curve of Y .

Solution. We just need to verify that

(f ◦ γ)′(t) = Tγ(t)f(γ
′(t)) = Tγ(t)f(Xγ(t)) = Yf(γ(t)) = Yf◦γ(t)

for all t in the domain of γ. □

(c) If f is a local diffeo, for every vector field Y ∈ X(N) there exists a unique

X ∈ X(M) that is f -related to Y . We denote f∗Y := X.
2
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Thus if f is a diffeo, f -relatedness is a bijection from X(M) to X(N). In this

case, if X is f -related to Y , we write X = f∗Y and Y = f∗X.

Solution. Assume f : M → N is a local diffeo. Thus for every point p ∈ M ,

the linear transformation Dpf :M → N is invertible.

Let Y ∈ X(N). A vector field X on M is f -related to Y iff for each point

p ∈M we have Dpf(X|p) = Yp, or, equivalently, X|p = (Dpf)
−1(Yf(p)). Thus

there is a unique vector field that is f -related to Y , and it is the function

p 7→ (Dpf)
−1(Yf(p)). □

(d) If f is a closed embedding, show that every vector field X ∈ X(M) is f -related

to some vector field Y ∈ X(N).

Hint: Construct Y locally, then use partitions of unity.

What happens if f is just an immersion? In this case, find and prove a local

version of the fact.

Solution. The local version is the following.

Lemma. Let f : M → N be a smooth immersion, and let X ∈ X(M). Then

for each point p0 ∈M there exist open neighborhoods U ⊆M and V ⊆ N of

p0 and f(p0) resp., and a vector field Y ∈ X(V ) such that X|U is f -related to

Y .

Proof. By the constant rank theorem, there exist charts φ : U → Ũ and

ψ : V → Ṽ ofM and N centered at p0 and f(p0) such that the local expression

f̃ = ψ ◦ f ◦ φ−1 of f is given by f̃(x0, . . . , xm−1) = (x0, . . . , xm−1, 0, . . . , 0).

Moreover, we can assume that Ṽ = Ũ×W̃ for some open set W̃ ⊆ Rn−m that

contains the origin.

Note that each coordinate vector field ∂
∂φi ∈ X(U) of the chart φ is f -

related to the corresponding coordinate vector field ∂
∂ψi ∈ X(V ) of the chart

ψ. That is, for each p ∈ U we have Dpf

(
∂
∂φi

∣∣∣
p

)
= ∂

∂ψi

∣∣∣
f(p)

.

Let π : Ṽ → Ũ be the projection map (x0, . . . , xm−1) 7→ (x0, . . . , xn−1),

and let ρ = φ−1 ◦ π ◦ ψ : U →W . Note that ρ is a retraction of f |VU .
LetXi be the components ofX w.r.t. the chart φ. ThusX|U =

∑
0≤i<nX

i ∂
∂φi

We construct a vector field Y ∈ X(V ) whose components w.r.t. the chart ψ

are

Y i =

{
Xi ◦ ρ if i < n,

0 if i ≥ n.

Thus Y |q =
∑

0≤i<nX
i(ρ(q)) ∂

∂ψi

∣∣∣
q
for each point q ∈ V .

In particular, at a point q = f(p) we have ρ(q) = p, therefore

Y |q =
∑

0≤i<n
Xi(p)

∂

∂ψi

∣∣∣∣
q

=
∑

0≤i<n
Xi(p)Dpf

(
∂

∂φi

∣∣∣∣
p

)

= Dpf

 ∑
0≤i<n

Xi(p)
∂

∂φi

∣∣∣∣
p

 = Dpf(Xp).

This shows that Y is f |VU -related to X. □

Now we can prove the global version.

Let f : M → N be a closed embedding, and let X ∈ X(M). We shall

construct a vector field Y ∈ X(N) such that X is f -related to Y .
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The closed set f(M) can be covered by open sets (Vk)k≥1 where there is a

vector field Yk ∈ X(Vk) that is f -related to X.

We also define the open set V0 = N \ f(M) and we put any vector field Y0
on V0, for example Y0 ≡ 0. Note that X is f -related to Y0 trivially. The open

sets (Vk)k≥0 form an open cover of N . Let (ηk)k≥0 be a partition of unity

subordinate to this cover, and consider the vector field Y =
∑

k ηkYk ∈ X(N).

We claim that X is f -related to Y . Indeed, for each point p ∈M we have

Yf(p) =
∑
k

ηk(f(p))Yk|f(p) =
∑
k

ηk(f(p))Dpf(X|p) = Dpf(X|p)

because
∑

k ηk(f(p)) = 1. □

Solution. Let ι : S → M be the inclusion map, and let Y = X|S ∈ X(S).

Note that Y is ι-related to X.

Let γ : I → M be an integral curve of X that visits S. The set I ′ =

γ−1(S) = {t ∈ I : γ(t) ∈ S} is nonempty and closed (because S is closed).

We want to prove that I ′ = I, and for this it suffices to show that I ′ is open.

Let t0 ∈ I ′. This means that γ(t0) ∈ S. Let β : J → S be an integral

curve of Y that coincides with γ at the instant t0, where J ⊆ R is an open

interval containing t0. Since Y is ι related to X, the curve ι ◦ β is an integral

curve of X that coincides with γ at t0, thus it coincides with γ in the interval

I ′′ = I ∩ J , which is a neighborhood of t0. This implies that γ(t) ∈ S for all

t ∈ I ′′. Therefore I ′′ ⊆ I ′, which proves that I ′ is open, as intended. □

Exercise 8.3. If X is a smooth vector field on a manifold M and p ∈ M is a point

whereXp ̸= 0, then there exists a chart (U, ϕ) ofM defined at p suchX|U = ∂
∂ϕ0

. Hint:

It is easier to construct the inverse ψ = ϕ−1. Use a function of the form ψ(x) = Φx0

X (f(x1, . . . , xn−1)),

where f : U →M is a suitable function defined on an open set U ⊆ Rn−1.

Solution. Let (V, η) be a chart centered at p, i.e. such that η(p) = 0. Denote Xi the

components of X with respect to the chart η. Since X|p ̸= 0, we may assume w.l.o.g

that X0 ̸= 0 at p, which means that the vectors X|p, ∂
∂η1

∣∣∣
p
, . . . , ∂

∂ηn−1

∣∣∣
p
are linearly

independent.

Consider the map ι : Rn−1 → Rn : (x1, . . . , xn−1) 7→ (0, x1, . . . , xn−1), and let

W = ι−1(η(V )), so that we can define the map f = η−1 ◦ ι :W → V .

Define the map ψ(x0, x1, . . . , xn−1) = Φx
0

X (f(x1, . . . , xn−1)) at all points where the

right hand side is defined. The domain of ψ is an open set which includes the slice

{0R} ×W . The partial derivative of ψ with respect to x0 is ∂ψ(x0,...,xn−1)
∂x0

= X. Its

other partial derivatives at the point x = 0 are

∂ψ(x0, . . . , xn−1)

∂xi

∣∣∣∣
x=0

=
∂f(x1, . . . , xn−1)

∂xi

∣∣∣∣
x=0

=
∂

∂ηi

∣∣∣∣
p

for i ̸= 0. Since the vectors Xp,
∂
∂η1

∣∣∣
p
, . . . , ∂

∂ηn−1

∣∣∣
p
are linearly independent, we

conclude that T0ψ is an isomorphism. Thus there is a neighborhood Z of 0 in Rn
such that the map ψ|Z : Z → ψ(Z) ⊆ M is a diffeomorphism. Hence ψ|Z is a local

parametrization of M . □

Exercise 8.4. (To hand in) Compute the flows of the following vector fields.

(a) On the plane R2, the “angular” vector field X = x ∂
∂y − y ∂

∂x .

(b) A constant vector field X on the torus Tn.

Exercise 8.5. Let X be a C∞ tangent vector field on a manifold M , with k ≥ 1.

(a) For a point p ∈M and numbers s, t ∈ R, show that the equation Φ
(s+t)
X (p) =

ΦtX(Φ
s
X(p)) holds if the right-hand side is defined.
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Solution. Since we are only considering one vector field X, we may omit the

subindex X and thus write Φ := ΦX , Ip := IX,p and γp := γX,p.

The right-hand side is defined if and only if s ∈ Ip (so that q := Φs(p) is

defined) and t ∈ Iq (so that Φt(q) = ΦtX(Φ
s(p)) is defined). We assume this

is the case.

The function τ 7→ γp(τ+s), defined for τ ∈ Ip−s, is the curve γq, because it
is a maximal integral curve of X that visits at time τ = 0 the point γp(s) = q.

In particular Iq = Ip−s. Thus since t ∈ Iq, it follows that t+s ∈ Ip, and that

Φt(Φs(p)) = Φt(q) = γq(t) = γp(t+ s) = Φt+s(p).

□

(b) We say that X is complete if its flow ΦX is defined over M ×R. Show that

a compactly supported vector field is complete. In particular, on a compact

manifold, every vector field is complete.

Solution. We will first show that the flow ΦX is defined on a set M × (−ε, ε)
for some ε > 0. Once this is established, we see that ΦtX(p) is defined for any

(p, t) ∈ M × R by decomposing t =
∑

i ti with |ti| < ε and applying the last

formula ΦtX(p) = Φt0X(Φ
t1
X . . . (p)). This shows that X is complete.

Suppose X vanishes outside a compact set K ⊆M . The domain of the flow

ΦX is a set Dom(ΦX) ⊆M ×R that contains the set K × {0R}. In addition,

Dom(ΦX) is open (this is part of the theorem of differentiability of the flow

ΦX). Since K is compact, by the tube lemma the open set Dom(ΦX) also

contains a “tube neighborhood” K × (−ε, ε) of the set K × {0R}, for some

number ε > 0. But the domain Dom(ΦX) also contains the set (M \K)×R,
because for points p ∈ M \ K, since the vector field X vanishes at p, the

maximal solution is the constant curve γX,p(t) = p, which is defined for all

t ∈ R. This shows that ΦX is defined on M × (−ε, ε), and therefore ΦX is

complete, as explained above. □

(c) If X is complete, show that the map ΦtX is a diffeomorphism M →M .

Solution. ΦtX is a diffeomorphism with inverse Φ−t
X since ΦtX ◦ Φ−t

X = Φt−t =

Φ0 = idM and similarly Φ−t
X ◦ ΦtX = idM . □

Exercise 8.6. If X is a complete C∞ vector field with (k ≥ 1) and h ∈ C∞(M,R).

(a) Show that the function X(h) :M → R that sends p 7→ Xp(h) is C∞.

Solution. Take a chart (U,φ) and write X|U =
∑

iX
i ∂
∂φi . Then X|p(h) =∑

iX
i|p ∂

∂φi |ph. Thus to see that the function X(h) is C∞, it suffices to check

that the functions Xi and ∂
∂φih are C∞. And indeed: the fact that X is C∞

means that the functions Xi are C∞, and the fact that h is Ck+1 implies that

its first-order derivatives ∂h
∂φi are C∞. □

(b) Show that X(h) = ∂
∂t

∣∣
t=0

ht, where ht := (ΦtX)
∗(h) = h ◦ ΦtX .

Also show that X(ht) = (ΦtX)
∗(X(h)).

Solution. Writing Φ := ΦX , we have

∂

∂t

∣∣∣∣
t=0

ht(p) =
∂

∂t

∣∣∣∣
t=0

h
(
Φt(p)

)
= TΦ0(p)h

(
∂

∂t

∣∣∣∣
t=0

Φt(p)

)
= Dph(Xp) = Xp(h).

□
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