Final Exam

Surname:
First name:
Section:

Quiz. True or false? (10 points; correct answer $=2 \mathrm{pts}$, wrong answer $=-1 \mathrm{pt}$, no answer $=0 \mathrm{pt})$
a) A stationary distribution satisfying detailed balance is always also a limiting distribution.
\square True $\quad \square$ False
b) If X, Y are two independent random variables with different distributions, then $\mathbb{P}(X \neq Y)>0$.False
c) If a Markov chain is finite, ergodic and reversible, then all the eigenvalues of its transition matrix are strictly less than 1 in absolute value.TrueFalse
d) The spectral gap of a finite, ergodic and reversible Markov chain characterizes always completely and precisely its convergence towards equilibirum.True False
e) The stationary distribution of a Metropolis chain necessarily satisfies detailed balance.
\square True

Exercise 1. (30 points)
Let $\left(X_{n}, n \geq 1\right)$ be a Markov chain with state space $\mathcal{S}=\{0,1\}$, initial distribution $\pi^{(0)}$ and transition matrix

$$
P=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right) \quad \text { where } \quad 0<p, q<1
$$

Let $\left(Y_{n}, n \geq 1\right)$ be another Markov chain with same state space \mathcal{S} and same transition matrix P, but whose initial distribution π is also the stationary distribution of the chain.
a) Compute π.

We consider now the coupled chain $Z=(X, Y)$ with state space $\mathcal{S} \times \mathcal{S}$ such that X, Y evolve independently according to P as long as $X_{n} \neq Y_{n}$, and then evolve together, still according to P, as soon as $X_{n}=Y_{n}$.
b) Write down the transition matrix P_{Z} of the chain Z.
c) Which states of Z are transient / recurrent?
d) Does the chain Z admit a unique limiting and stationary distribution π_{Z} ? If yes, compute it; if no, explain why.
e) Express $\mathbb{P}\left(X_{n+1} \neq Y_{n+1}\right)$ as a function of $\mathbb{P}\left(X_{n} \neq Y_{n}\right)$.
f) From e), deduce an upper bound on $\max _{i \in \mathcal{S}}\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}}$.
g) When $p=q$, what value of $0<p<1$ leads to the fastest convergence?
please turn the page \%

Exercise 2. (16 points)

Let $M \geq 1$ be an integer and $N=4 M+1$. We consider the Markov chain with state space $\mathcal{S}=\{0,1, \ldots, N-1\}$ and transition matrix given by

$$
P=\operatorname{circ}(0,0,1 / 2,0, \ldots, 0,1 / 2,0)
$$

Note: In the case $N=5, P=\operatorname{circ}(0,0,1 / 2,1 / 2,0)$.
a) Compute the spectral gap of the chain.

Reminder: If A is an $N \times N$ circulant matrix $A=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{N-1}\right)$, then its eigenvalues are given by

$$
\lambda_{k}=\sum_{j=0}^{N-1} c_{j} \exp \left(\frac{2 \pi i j k}{N}\right) \quad k=0, \ldots, N-1
$$

Consider now the modified chain with added self-loops, all of the same weight $0<\alpha<1$, and transition probabilities decreased accordingly by a multiplicative factor $1-\alpha$.
b) For a fixed value of N, compute the value of α leading to the largest possible value of the spectral gap for the modified chain.
c) Compute the numerical value of α in the case $N=5$.

Hints: Use the formula $\cos (2 x)=2 \cos ^{2}(x)-1$ and the fact that $\cos (\pi / 5)=\frac{1+\sqrt{5}}{4}$.

Exercise 3. (16 points)
Let first $i_{0} \in \mathbb{Z}$ and $\beta>0$. Let us then consider the Metropolis chain with state space $\mathcal{S}=\mathbb{Z}$ obtained from the base chain with the following transition probabilities:

$$
\psi_{i j}= \begin{cases}1 / 2 & \text { if }|j-i|=1 \\ 0 & \text { otherwise }\end{cases}
$$

and with the following acceptance probabilities:

$$
a_{i j}= \begin{cases}e^{-\beta} & \text { if }\left(j=i+1 \text { and } i \geq i_{0}\right) \text { or }\left(j=i-1 \text { and } i \leq i_{0}\right) \\ 1 & \text { if }\left(j=i+1 \text { and } i<i_{0}\right) \text { or }\left(j=i-1 \text { and } i>i_{0}\right)\end{cases}
$$

a) Compute the limiting distribution π of the Metropolis chain.
b) Assuming first that the Metropolis chain is run for a sufficiently long time, what is the probability that state i_{0} is sampled with this method?
c) For what values of $\beta>0$ is this probability greater than or equal to $1 / 2$?
d) Assume now that $i_{0}>0$, that the Metropolis chain starts in position $i=0$ with probability 1 , and that it is run only for i_{0} steps. What is the probability that state i_{0} is sampled in this case?

