Final Exam

Exercise 1. (22+2 points)
Useful reminders for this exercise: For any $0<x<1$ and $k \geq 1$, we have:

$$
\sum_{n \geq 0} x^{n}=\frac{1}{1-x} \quad / / \quad \sum_{n \geq 1} n x^{n-1}=\frac{\partial}{\partial x}\left(\sum_{n \geq 1} x^{n}\right)=\ldots \quad / / \quad \sum_{j=1}^{k} x^{j}=\frac{x^{k+1}-x}{x-1}
$$

Let us consider the Markov chain ($X_{n}, n \geq 0$) with state space $S=\{i A, i B, i \in \mathbb{N}\}$ and the following transition graph:

where $0<p<1$ is a fixed parameter.
a) For every $n \geq 1$, compute the value of

$$
f_{0 A, 0 A}^{(n)}=\mathbb{P}\left(X_{n}=0 A, X_{n-1} \neq 0 A, \ldots, X_{1} \neq 0 A \mid X_{0}=0 A\right)
$$

Answer: Any path starting from the state $O A$ and returning to it has even length. Therefore $f_{0 A, 0 A}^{(n)}=0$ for n odd. If n is even then the only path starting from $0 A$ and returning to it for the first time after n steps is

$$
0 A \rightarrow 1 A \rightarrow \cdots \rightarrow(n / 2-1) A \rightarrow(n / 2-1) B \rightarrow 0 B \rightarrow 0 A
$$

It comes $f_{0 A, 0 A}^{(n)}=(1-p) p^{\frac{n}{2}-1}$ for $n \geq 1$ even.
b) For what values of $0<p<1$ is state $0 A$ recurrent? Justify your answer.

Answer: For $0<p<1$

$$
\sum_{n=1}^{+\infty} f_{0 A, 0 A}^{(n)}=\sum_{m=1}^{+\infty}(1-p) p^{\frac{2 m}{2}-1}=(1-p) \sum_{m=1}^{+\infty} p^{m-1}=(1-p) \cdot \frac{1}{1-p}=1
$$

The state $0 A$ is therefore recurrent for all $p \in(0,1)$.

Let now $T_{0 A}=\inf \left\{n \geq 1: X_{n}=0 A\right\}$ be the first return time to state $0 A$.
c) Compute $\mathbb{E}\left(T_{0 A} \mid X_{0}=0 A\right)$.

Answer: Remember that $\mathbb{P}\left(T_{0 A}=n \mid X_{0}=0 A\right)=f_{0 A, 0 A}^{(n)}$. Then the expected return time is computed by making use of the second formula given in introduction:

$$
\mathbb{E}\left(T_{0 A} \mid X_{0}=0 A\right)=\sum_{n=1}^{+\infty} n f_{0 A, 0 A}^{(n)}=\sum_{m=1}^{+\infty} 2 m(1-p) p^{m-1}=\left.2(1-p) \frac{\partial}{\partial x}\left(\sum_{m \geq 1} x^{m}\right)\right|_{x=p}=\frac{2}{1-p}
$$

The last equality follows from $\sum_{m \geq 1} x^{m}=\frac{1}{1-x}$ and $\frac{\partial}{\partial x}\left(\frac{1}{1-x}\right)=(1-x)^{-2}$.
d) For what values of $0<p<1$ is state $0 A$ positive-recurrent? Justify your answer.

Answer: The expected return time is finite, and therefore the state $0 A$ is positive-recurrent, for all $p \in(0,1)$.
e) Without doing any computation, explain why does the chain $\left(X_{n}, n \geq 0\right)$ admit a unique stationary distribution π for every value of $0<p<1$.

Answer: The chain is irreducible and positive-recurrent (we proved $0 A$ is positive-recurrent and the chain has a unique equivalence class). By a theorem seen in class the existence and uniqueness of a stationary distribution π follows.
f) Show by induction on i that $\pi_{i A}=\pi_{i B}$ for every $i \in \mathbb{N}$.

Answer: The equation $\pi=\pi P$ reads

$$
\pi_{0 A}=\pi_{O B} \quad \text { and } \quad \forall i \geq 1: \pi_{i A}=p \pi_{(i-1) A}, \pi_{(i-1) B}=(1-p) \pi_{(i-1) A}+\pi_{i B}
$$

Hence $\pi_{i B}-\pi_{i A}=\pi_{(i-1) B}-(1-p) \pi_{(i-1) A}-p \pi_{(i-1) A}=\pi_{(i-1) B}-\pi_{(i-1) A}$ for all $i \geq 1$. The result follows by induction, as $\pi_{0 A}=\pi_{O B}$.
g) Use f) to compute the stationary distribution π.

Answer: We have seen in class that $\pi_{0 A}=\frac{1}{\mathbb{E}\left(T_{0 A} \mid X_{0}=0 A\right)}=\frac{1-p}{2}$. Besides, for all $i \geq 1, \pi_{i A}=\pi_{i B}$ and $\pi_{i A}=p \pi_{(i-1) A}=p^{i} \pi_{0 A}$. The stationary distribution follows:

$$
\forall i \in \mathbb{N}: \pi_{i A}=\pi_{i B}=\frac{p^{i}(1-p)}{2}
$$

h) Are the detailed balance equations satisfied?

Answer: The detailed balance equations are not satisfied, because there exist states i, j with $p_{i j}>0$ and $p_{j i}=0$.

BONUS For every $n \geq 1$, compute the value of

$$
p_{0 A, 0 A}^{(n)}=\mathbb{P}\left(X_{n}=0 A \mid X_{0}=0 A\right)
$$

Answer: One sees easily that $p_{0 A, 0 A}^{(n)}=0$ for n odd and that $p_{0 A, 0 A}^{(2)}=1-p$. Likewise, direct computations show that $p_{0 A, 0 A}^{(4)}=p_{0 A, 0 A}^{(6)}=1-p, \ldots$, so this suggests trying to prove by induction that $p_{0 A, 0 A}^{(n)}=1-p$ for all even n 's. Assume indeed $p_{0 A, 0 A}^{(2 n)}=1-p$ for all $1 \leq k \leq n$ (remembering that $p_{0 A, 0 A}^{(0)}=1$ by convention). From the course, we know that

$$
\begin{aligned}
p_{0 A, 0 A}^{(2 n+2)} & =\sum_{k=1}^{n+1} f_{0 A, 0 A}^{(2 k)} p_{0 A, 0 A}^{(2 n+2-2 k)}=\sum_{k=1}^{n} p^{k-1}(1-p)(1-p)+p^{n}(1-p) 1 \\
& =\frac{p^{n}-p}{p-1}(1-p)^{2}+p^{n}(1-p)=1-p
\end{aligned}
$$

which proves the claim.

Exercise 2. (20+2 points) Let $0<p \leq \frac{1}{2}$ and $0<q \leq 1$ be two fixed parameters and consider the Markov chain $\left(X_{n}, n \geq 0\right)$ with state space $\mathcal{S}=\{0,1,2\}$ and transition matrix

$$
P=\left(\begin{array}{ccc}
1-2 p & p & p \\
q & 1-q & 0 \\
q & 0 & 1-q
\end{array}\right)
$$

a) For any given values of p, q, compute the stationary distribution π of the chain X.

Answer: The system of equations for the stationary distribution π reads

$$
\pi=\pi P \Leftrightarrow\left\{\begin{array}{l}
\pi_{0}=(1-2 p) \pi_{0}+q \pi_{1}+q \pi_{2} \\
\pi_{1}=p \pi_{0}+(1-q) \pi_{1} \\
\pi_{2}=p \pi_{0}+(1-q) \pi_{2}
\end{array} \quad \Leftrightarrow \pi_{1}=\pi_{2}=\frac{p}{q} \pi_{0}\right.
$$

This last equation, combined with $\pi_{0}+\pi_{1}+\pi_{1}=1$, gives $\pi_{0}=\frac{q}{q+2 p}, \pi_{1}=\pi_{2}=\frac{p}{q+2 p}$.
b) For any given values of p, q, compute the eigenvalues of P.

Answer: One of the eigenvalue is of course $\lambda_{0}=1$. Besides the eigenvalues satisfy

$$
\begin{aligned}
\operatorname{Tr}(P) & =\lambda_{0}+\lambda_{1}+\lambda_{2}=3-2 p-2 q \\
\operatorname{det}(P) & =\lambda_{0} \lambda_{1} \lambda_{2}=(1-2 p)(1-q)^{2}-2 p q(1-q)=(1-q)(1-2 p-q)
\end{aligned}
$$

λ_{1}, λ_{2} are the roots of the polynomial $X^{2}-2(1-p-q) X+(1-q)(1-2 p-q)$ whose discriminant is $\Delta=4(1-p-q)^{2}-4(1-q)(1-2 p-q)=4 p^{2}$. We find

$$
\lambda_{1}=1-q, \lambda_{2}=1-2 p-q
$$

c) Deduce the corresponding spectral gap γ of the chain X, as well as a tight upper bound on

$$
\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}}
$$

for large values of n.

Answer: The spectral gap is

$$
\gamma=\max \left\{\lambda_{1},-\lambda_{2}\right\}= \begin{cases}q & \text { if } p+q \leq 1 \\ 2(1-p)-q & \text { if } p+q>1\end{cases}
$$

For large n the upperbound $\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{2 \sqrt{\pi_{0}}} e^{-n \gamma}$ is tight.

Let us now consider another Markov chain $\left(Y_{n}, n \geq 0\right)$ with same state space \mathcal{S} and transition matrix

$$
Q=\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

d) For what values of p, q do the chains X and Y share the same stationary distribution?

Answer: Q is doubly stochastic, so its stationary distribution is the uniform distribution on \mathcal{S}, i.e., $(1 / 3,1 / 3,1 / 3)$. Clearly, $\pi_{0}=\pi_{1}=\pi_{2}$ if and only if $0<p=q \leq \frac{1}{2}$.
e) Among the values of p, q found in part d), which correspond to the largest spectral γ for the chain X ?

Answer: If $0<p=q \leq \frac{1}{2}$ then $p+q=2 p \leq 1$ and the spectral gap is $\gamma=q$. It is the largest when $p=q=\frac{1}{2}$.

BONUS Do the spectral gaps of X and Y match in this last case?
Answer: The eigenvalues of Q are 1 with geometric multiplicity 1 and $-\frac{1}{2}$ with geometric multiplicity 2 (the eigenvectors are easily seen to be $(1,-1,0)^{T}$ and $\left.(0,1,-1)^{T}\right)$. Then the spectral gap of Y is $\frac{1}{2}$, which matches with the spectral gap of X in this last case.

Exercise 3. (18 points) Let us consider the Markov chain with state space $\mathcal{S}=\mathbb{N}^{*}=\{1,2,3, \ldots\}$, with transition graph

and with corresponding transition matrix Ψ.
a) Let $\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}, \ldots\right)$ be a distribution on \mathcal{S} such that $\pi_{i}>\pi_{i+1}$ for all $i \geq 1$. Starting from the base chain with transition matrix Ψ, design a new Markov chain chain with transition matrix P whose stationary distribution is π. Compute the matrix P explicitly.

Answer: We use the Metropolis-Hasting algorithm to build a new chain which satisfies the detailed balance equations for π (making π a stationary disitribution for this chain). The acceptance
probabilities will be $a_{i j}=\min \left\{1, \frac{\pi_{j} \psi_{j i}}{\pi_{i} \psi_{i j}}\right\}$ whenever $\psi_{i j}>0$ (note that $\psi_{i j} \neq 0 \Leftrightarrow \psi_{j i} \neq 0$). The transition probabilities of the matrix P read

$$
p_{i j}= \begin{cases}\frac{1}{3} \min \left\{1, \frac{2 \pi_{i+1}}{\pi_{i}}\right\} & \text { for } j=i+1, i \geq 1 ; \\ \frac{2}{3} \min \left\{1, \frac{\pi_{i-1}}{2 \pi_{i}}\right\} & \text { for } j=i-1, i \geq 2 ; \\ 1-\frac{1}{3} \min \left\{1, \frac{2 \pi_{i+1}}{\pi_{i}}\right\}-\frac{2}{3} \min \left\{1, \frac{\pi_{i-1}}{2 \pi_{i}}\right\} & \text { for } j=i, i \geq 2 ; \\ 1-\frac{1}{3} \min \left\{1, \frac{2 \pi_{2}}{\pi_{1}}\right\} & \text { for } j=i=1 .\end{cases}
$$

b) What do we know about the chain with transition matrix P and the stationary distribution π ? List all the properties you can think of.

Answer: The base chain is irreducible, aperiodic, and so is the new chain. Besides, the new chain is built to satisfy the detailed balance equations so that π is its stationary distribution. Hence the new chain is positive-recurrent (it is irreducible and has a stationary distribution). We have all the properties to conclude that the chain with transition matrix P is ergodic (so that the stationary distribution π is also a limiting distribution).
c) Compute $\lim _{i \rightarrow \infty} p_{i, i+1}$ in the 3 following cases:
c1) $\pi_{i}=\frac{1}{Z} \frac{1}{i^{q}}, i \geq 1$. Here, $q>1$ is a fixed parameter and $Z=\sum_{i \geq 1} \frac{1}{i^{q}}$.
c2) $\pi_{i}=\frac{1}{Z} \exp (-i), i \geq 1$, with $Z=\sum_{i \geq 1} \exp (-i)$.
c3) $\pi_{i}=\frac{1}{Z} \exp \left(-i^{2}\right), i \geq 1$, with $Z=\sum_{i \geq 1} \exp \left(-i^{2}\right)$.
Answer: From question a), $p_{i, i+1}=\frac{1}{3} \min \left\{1, \frac{2 \pi_{i+1}}{\pi_{i}}\right\}$. It comes

$$
\begin{aligned}
& \text { c1) } p_{i, i+1}=\frac{1}{3} \min \left\{1, \frac{2 i^{q}}{(i+1)^{q}}\right\}=\frac{1}{3} \min \left\{1, \frac{2}{\left(1+i^{-1}\right)^{q}}\right\} \rightarrow \frac{1}{3} ; \\
& \text { c2) } p_{i, i+1}=\frac{1}{3} \min \left\{1, \frac{2 e^{-i-1}}{e^{-i}}\right\}=\frac{1}{3} \min \left\{1,2 e^{-1}\right\}=\frac{2}{3 e} \rightarrow \frac{2}{3 e} ; \\
& \text { c3) } p_{i, i+1}=\frac{1}{3} \min \left\{1, \frac{2 e^{-(i+1)^{2}}}{e^{-i^{2}}}\right\}=\frac{1}{3} \min \left\{1,2 e^{-1-2 i}\right\} \rightarrow 0 .
\end{aligned}
$$

d) For which of the above 3 example(s) does the Metropolis algorithm always accept a move from i to $i-1, \forall i \geq 2$?
Answer: From question a), $a_{i, i-1}=\min \left\{1, \frac{\pi_{i-1}}{2 \pi_{i}}\right\}$ for $i \geq 2$. It comes

$$
\begin{aligned}
& \text { c1) } a_{i, i-1}=\min \left\{1, \frac{i^{q}}{2(i-1)^{q}}\right\}=\min \left\{1, \frac{1}{2\left(1-i^{-1}\right)^{q}}\right\}<1 \text { for large values of } i ; \\
& \text { c2) } a_{i, i-1}=\min \left\{1, \frac{e^{-i+1}}{2 e^{-i}}\right\}=\min \{1, e / 2\}=1 ; \\
& \text { c3) } a_{i, i-1}=\min \left\{1, \frac{e^{-(i-1)^{2}}}{2 e^{-i^{2}}}\right\}=\min \left\{1, e^{-1+2 i} / 2\right\}=1 .
\end{aligned}
$$

So only in the last two cases does the Metropolis algorithm always accept a move from i to $i-1$, $\forall i \geq 2$.

