Final Exam

Exercise 1. (22+2 points)

Useful reminders for this exercise: For any 0 < x < 1 and $k \ge 1$, we have:

$$\sum_{n \ge 0} x^n = \frac{1}{1 - x} \quad / / \quad \sum_{n \ge 1} n x^{n-1} = \frac{\partial}{\partial x} \left(\sum_{n \ge 1} x^n \right) = \dots \quad / / \quad \sum_{j=1}^k x^j = \frac{x^{k+1} - x}{x - 1}$$

Let us consider the Markov chain $(X_n, n \ge 0)$ with state space $S = \{iA, iB, i \in \mathbb{N}\}$ and the following transition graph:

where 0 is a fixed parameter.

a) For every $n \ge 1$, compute the value of

$$f_{0A,0A}^{(n)} = \mathbb{P}(X_n = 0A, X_{n-1} \neq 0A, \dots, X_1 \neq 0A \mid X_0 = 0A)$$

Answer: Any path starting from the state OA and returning to it has even length. Therefore $f_{0A,0A}^{(n)} = 0$ for n odd. If n is even then the only path starting from 0A and returning to it for the first time after n steps is

$$0A \rightarrow 1A \rightarrow \cdots \rightarrow (n/2-1)A \rightarrow (n/2-1)B \rightarrow 0B \rightarrow 0A$$
.

It comes $f_{0A,0A}^{(n)} = (1-p)p^{\frac{n}{2}-1}$ for $n \ge 1$ even.

b) For what values of 0 is state <math>0A recurrent? Justify your answer.

Answer: For 0

$$\sum_{n=1}^{+\infty} f_{0A,0A}^{(n)} = \sum_{m=1}^{+\infty} (1-p)p^{\frac{2m}{2}-1} = (1-p)\sum_{m=1}^{+\infty} p^{m-1} = (1-p) \cdot \frac{1}{1-p} = 1.$$

The state 0A is therefore recurrent for all $p \in (0,1)$.

Let now $T_{0A} = \inf\{n \ge 1 : X_n = 0A\}$ be the first return time to state 0A.

c) Compute $\mathbb{E}(T_{0A} | X_0 = 0A)$.

Answer: Remember that $\mathbb{P}(T_{0A} = n|X_0 = 0A) = f_{0A,0A}^{(n)}$. Then the expected return time is computed by making use of the second formula given in introduction:

$$\mathbb{E}(T_{0A}|X_0=0A) = \sum_{n=1}^{+\infty} n f_{0A,0A}^{(n)} = \sum_{m=1}^{+\infty} 2m(1-p)p^{m-1} = 2(1-p)\frac{\partial}{\partial x} \left(\sum_{m>1} x^m\right) \bigg|_{x=p} = \frac{2}{1-p}.$$

The last equality follows from $\sum_{m\geq 1} x^m = \frac{1}{1-x}$ and $\frac{\partial}{\partial x} \left(\frac{1}{1-x}\right) = (1-x)^{-2}$.

d) For what values of 0 is state <math>0A positive-recurrent? Justify your answer.

Answer: The expected return time is finite, and therefore the state 0A is positive-recurrent, for all $p \in (0,1)$.

e) Without doing any computation, explain why does the chain $(X_n, n \ge 0)$ admit a unique stationary distribution π for every value of 0 .

Answer: The chain is irreducible and positive-recurrent (we proved 0A is positive-recurrent and the chain has a unique equivalence class). By a theorem seen in class the existence and uniqueness of a stationary distribution π follows.

f) Show by induction on i that $\pi_{iA} = \pi_{iB}$ for every $i \in \mathbb{N}$.

Answer: The equation $\pi = \pi P$ reads

$$\pi_{0A} = \pi_{OB}$$
 and $\forall i \ge 1 : \pi_{iA} = p\pi_{(i-1)A}, \ \pi_{(i-1)B} = (1-p)\pi_{(i-1)A} + \pi_{iB}$.

Hence $\pi_{iB} - \pi_{iA} = \pi_{(i-1)B} - (1-p)\pi_{(i-1)A} - p\pi_{(i-1)A} = \pi_{(i-1)B} - \pi_{(i-1)A}$ for all $i \ge 1$. The result follows by induction, as $\pi_{0A} = \pi_{OB}$.

g) Use f) to compute the stationary distribution π .

Answer: We have seen in class that $\pi_{0A} = \frac{1}{\mathbb{E}(T_{0A}|X_0=0A)} = \frac{1-p}{2}$. Besides, for all $i \geq 1$, $\pi_{iA} = \pi_{iB}$ and $\pi_{iA} = p\pi_{(i-1)A} = p^i\pi_{0A}$. The stationary distribution follows:

$$\forall i \in \mathbb{N}: \ \pi_{iA} = \pi_{iB} = \frac{p^{i} (1 - p)}{2}.$$

h) Are the detailed balance equations satisfied?

Answer: The detailed balance equations are not satisfied, because there exist states i, j with $p_{ij} > 0$ and $p_{ji} = 0$.

BONUS For every n > 1, compute the value of

$$p_{0A,0A}^{(n)} = \mathbb{P}(X_n = 0A \mid X_0 = 0A)$$

Answer: One sees easily that $p_{0A,0A}^{(n)}=0$ for n odd and that $p_{0A,0A}^{(2)}=1-p$. Likewise, direct computations show that $p_{0A,0A}^{(4)}=p_{0A,0A}^{(6)}=1-p,\ldots$, so this suggests trying to prove by induction that $p_{0A,0A}^{(n)}=1-p$ for all even n's. Assume indeed $p_{0A,0A}^{(2n)}=1-p$ for all $1\leq k\leq n$ (remembering that $p_{0A,0A}^{(0)}=1$ by convention). From the course, we know that

$$p_{0A,0A}^{(2n+2)} = \sum_{k=1}^{n+1} f_{0A,0A}^{(2k)} \ p_{0A,0A}^{(2n+2-2k)} = \sum_{k=1}^{n} p^{k-1} (1-p) (1-p) + p^{n} (1-p) 1$$
$$= \frac{p^{n} - p}{p-1} (1-p)^{2} + p^{n} (1-p) = 1-p$$

which proves the claim.

Exercise 2. (20+2 points) Let $0 and <math>0 < q \le 1$ be two fixed parameters and consider the Markov chain $(X_n, n \ge 0)$ with state space $S = \{0, 1, 2\}$ and transition matrix

$$P = \begin{pmatrix} 1 - 2p & p & p \\ q & 1 - q & 0 \\ q & 0 & 1 - q \end{pmatrix}$$

a) For any given values of p, q, compute the stationary distribution π of the chain X.

Answer: The system of equations for the stationary distribution π reads

$$\pi = \pi P \Leftrightarrow \begin{cases} \pi_0 = (1 - 2p)\pi_0 + q\pi_1 + q\pi_2 \\ \pi_1 = p\pi_0 + (1 - q)\pi_1 \\ \pi_2 = p\pi_0 + (1 - q)\pi_2 \end{cases} \Leftrightarrow \pi_1 = \pi_2 = \frac{p}{q}\pi_0.$$

This last equation, combined with $\pi_0 + \pi_1 + \pi_1 = 1$, gives $\pi_0 = \frac{q}{q+2p}$, $\pi_1 = \pi_2 = \frac{p}{q+2p}$.

b) For any given values of p, q, compute the eigenvalues of P.

Answer: One of the eigenvalue is of course $\lambda_0 = 1$. Besides the eigenvalues satisfy

$$Tr(P) = \lambda_0 + \lambda_1 + \lambda_2 = 3 - 2p - 2q,$$

$$det(P) = \lambda_0 \lambda_1 \lambda_2 = (1 - 2p)(1 - q)^2 - 2pq(1 - q) = (1 - q)(1 - 2p - q).$$

 λ_1, λ_2 are the roots of the polynomial $X^2 - 2(1-p-q)X + (1-q)(1-2p-q)$ whose discriminant is $\Delta = 4(1-p-q)^2 - 4(1-q)(1-2p-q) = 4p^2$. We find

$$\lambda_1 = 1 - q$$
, $\lambda_2 = 1 - 2p - q$.

c) Deduce the corresponding spectral gap γ of the chain X, as well as a tight upper bound on

$$||P_0^n - \pi||_{\text{TV}}$$

for large values of n.

Answer: The spectral gap is

$$\gamma = \max\{\lambda_1, -\lambda_2\} = \begin{cases} q & \text{if } p + q \le 1; \\ 2(1-p) - q & \text{if } p + q > 1. \end{cases}$$

For large n the upper bound $||P_0^n - \pi||_{\text{TV}} \leq \frac{1}{2\sqrt{\pi_0}} e^{-n\gamma}$ is tight.

Let us now consider another Markov chain $(Y_n, n \ge 0)$ with same state space S and transition matrix

$$Q = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$

d) For what values of p, q do the chains X and Y share the same stationary distribution?

Answer: Q is doubly stochastic, so its stationary distribution is the uniform distribution on S, i.e., (1/3, 1/3, 1/3). Clearly, $\pi_0 = \pi_1 = \pi_2$ if and only if 0 .

e) Among the values of p, q found in part d), which correspond to the largest spectral γ for the chain X?

Answer: If $0 then <math>p + q = 2p \le 1$ and the spectral gap is $\gamma = q$. It is the largest when $p = q = \frac{1}{2}$.

BONUS Do the spectral gaps of X and Y match in this last case?

Answer: The eigenvalues of Q are 1 with geometric multiplicity 1 and $-\frac{1}{2}$ with geometric multiplicity 2 (the eigenvectors are easily seen to be $(1,-1,0)^T$ and $(0,1,-1)^T$). Then the spectral gap of Y is $\frac{1}{2}$, which matches with the spectral gap of X in this last case.

Exercise 3. (18 points) Let us consider the Markov chain with state space $S = \mathbb{N}^* = \{1, 2, 3, \ldots\}$, with transition graph

and with corresponding transition matrix Ψ .

a) Let $\pi = (\pi_1, \pi_2, \pi_3, ...)$ be a distribution on S such that $\pi_i > \pi_{i+1}$ for all $i \geq 1$. Starting from the base chain with transition matrix Ψ , design a new Markov chain chain with transition matrix P whose stationary distribution is π . Compute the matrix P explicitly.

Answer: We use the Metropolis-Hasting algorithm to build a new chain which satisfies the detailed balance equations for π (making π a stationary distribution for this chain). The acceptance

4

probabilities will be $a_{ij} = \min \left\{ 1, \frac{\pi_j \psi_{ji}}{\pi_i \psi_{ij}} \right\}$ whenever $\psi_{ij} > 0$ (note that $\psi_{ij} \neq 0 \Leftrightarrow \psi_{ji} \neq 0$). The transition probabilities of the matrix P read

$$p_{ij} = \begin{cases} \frac{1}{3} \min\left\{1, \frac{2\pi_{i+1}}{\pi_i}\right\} & \text{for } j = i+1, i \ge 1; \\ \frac{2}{3} \min\left\{1, \frac{\pi_{i-1}}{2\pi_i}\right\} & \text{for } j = i-1, i \ge 2; \\ 1 - \frac{1}{3} \min\left\{1, \frac{2\pi_{i+1}}{\pi_i}\right\} - \frac{2}{3} \min\left\{1, \frac{\pi_{i-1}}{2\pi_i}\right\} & \text{for } j = i, i \ge 2; \\ 1 - \frac{1}{3} \min\left\{1, \frac{2\pi_2}{\pi_1}\right\} & \text{for } j = i = 1. \end{cases}$$

b) What do we know about the chain with transition matrix P and the stationary distribution π ? List all the properties you can think of.

Answer: The base chain is irreducible, aperiodic, and so is the new chain. Besides, the new chain is built to satisfy the detailed balance equations so that π is its stationary distribution. Hence the new chain is positive-recurrent (it is irreducible and has a stationary distribution). We have all the properties to conclude that the chain with transition matrix P is ergodic (so that the stationary distribution π is also a limiting distribution).

c) Compute $\lim_{i\to\infty} p_{i,i+1}$ in the 3 following cases:

c1)
$$\pi_i = \frac{1}{Z} \frac{1}{i^q}, i \ge 1$$
. Here, $q > 1$ is a fixed parameter and $Z = \sum_{i \ge 1} \frac{1}{i^q}$.

c2)
$$\pi_i = \frac{1}{Z} \exp(-i), i \ge 1, \text{ with } Z = \sum_{i \ge 1} \exp(-i).$$

c3)
$$\pi_i = \frac{1}{Z} \exp(-i^2), i \ge 1$$
, with $Z = \sum_{i>1} \exp(-i^2)$.

Answer: From question a), $p_{i,i+1} = \frac{1}{3} \min \left\{ 1, \frac{2\pi_{i+1}}{\pi_i} \right\}$. It comes

c1)
$$p_{i,i+1} = \frac{1}{3} \min \left\{ 1, \frac{2i^q}{(i+1)^q} \right\} = \frac{1}{3} \min \left\{ 1, \frac{2}{(1+i^{-1})^q} \right\} \to \frac{1}{3};$$

c2)
$$p_{i,i+1} = \frac{1}{3} \min \left\{ 1, \frac{2e^{-i-1}}{e^{-i}} \right\} = \frac{1}{3} \min \left\{ 1, 2e^{-1} \right\} = \frac{2}{3e} \to \frac{2}{3e};$$

c3)
$$p_{i,i+1} = \frac{1}{3} \min \left\{ 1, \frac{2e^{-(i+1)^2}}{e^{-i^2}} \right\} = \frac{1}{3} \min \left\{ 1, 2e^{-1-2i} \right\} \to 0.$$

d) For which of the above 3 example(s) does the Metropolis algorithm always accept a move from i to i-1, $\forall i \geq 2$?

Answer: From question a), $a_{i,i-1} = \min\left\{1, \frac{\pi_{i-1}}{2\pi_i}\right\}$ for $i \geq 2$. It comes

c1)
$$a_{i,i-1} = \min\left\{1, \frac{i^q}{2(i-1)^q}\right\} = \min\left\{1, \frac{1}{2(1-i^{-1})^q}\right\} < 1$$
 for large values of i ;

c2)
$$a_{i,i-1} = \min\left\{1, \frac{e^{-i+1}}{2e^{-i}}\right\} = \min\left\{1, e/2\right\} = 1;$$

c3)
$$a_{i,i-1} = \min\left\{1, \frac{e^{-(i-1)^2}}{2e^{-i^2}}\right\} = \min\left\{1, e^{-1+2i}/2\right\} = 1.$$

So only in the last two cases does the Metropolis algorithm always accept a move from i to i-1, $\forall i \geq 2$.