
Markov Chains and Algorithmic Applications EPFL - Fall Semester 2018-2019

Final Exam

Exercise 1. (22+2 points)

Useful reminders for this exercise: For any 0 < x < 1 and k ≥ 1, we have:

∑
n≥0

xn =
1

1− x
//

∑
n≥1

nxn−1 =
∂

∂x

∑
n≥1

xn

 = . . . //

k∑
j=1

xj =
xk+1 − x
x− 1

Let us consider the Markov chain (Xn, n ≥ 0) with state space S = {iA, iB, i ∈ N} and the
following transition graph:

where 0 < p < 1 is a fixed parameter.

a) For every n ≥ 1, compute the value of

f
(n)
0A,0A = P(Xn = 0A,Xn−1 6= 0A, . . . ,X1 6= 0A |X0 = 0A)

Answer: Any path starting from the state OA and returning to it has even length. Therefore

f
(n)
0A,0A = 0 for n odd. If n is even then the only path starting from 0A and returning to it for the

first time after n steps is

0A→ 1A→ · · · → (n/2− 1)A→ (n/2− 1)B → 0B → 0A .

It comes f
(n)
0A,0A = (1− p)p

n
2
−1 for n ≥ 1 even.

b) For what values of 0 < p < 1 is state 0A recurrent? Justify your answer.

Answer: For 0 < p < 1

+∞∑
n=1

f
(n)
0A,0A =

+∞∑
m=1

(1− p)p
2m
2
−1 = (1− p)

+∞∑
m=1

pm−1 = (1− p) · 1

1− p
= 1 .

The state 0A is therefore recurrent for all p ∈ (0, 1).
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Let now T0A = inf{n ≥ 1 : Xn = 0A} be the first return time to state 0A.

c) Compute E(T0A |X0 = 0A).

Answer: Remember that P(T0A = n|X0 = 0A) = f
(n)
0A,0A. Then the expected return time is

computed by making use of the second formula given in introduction:

E(T0A |X0 = 0A) =

+∞∑
n=1

nf
(n)
0A,0A =

+∞∑
m=1

2m(1− p)pm−1 = 2(1− p) ∂
∂x

(∑
m≥1

xm

)∣∣∣∣∣
x=p

=
2

1− p
.

The last equality follows from
∑

m≥1 x
m = 1

1−x and ∂
∂x

(
1

1−x

)
= (1− x)−2.

d) For what values of 0 < p < 1 is state 0A positive-recurrent? Justify your answer.

Answer: The expected return time is finite, and therefore the state 0A is positive-recurrent, for all
p ∈ (0, 1).

e) Without doing any computation, explain why does the chain (Xn, n ≥ 0) admit a unique sta-
tionary distribution π for every value of 0 < p < 1.

Answer: The chain is irreducible and positive-recurrent (we proved 0A is positive-recurrent and
the chain has a unique equivalence class). By a theorem seen in class the existence and uniqueness
of a stationary distribution π follows.

f) Show by induction on i that πiA = πiB for every i ∈ N.

Answer: The equation π = πP reads

π0A = πOB and ∀i ≥ 1 : πiA = pπ(i−1)A , π(i−1)B = (1− p)π(i−1)A + πiB .

Hence πiB − πiA = π(i−1)B − (1− p)π(i−1)A − pπ(i−1)A = π(i−1)B − π(i−1)A for all i ≥ 1. The result
follows by induction, as π0A = πOB.

g) Use f) to compute the stationary distribution π.

Answer: We have seen in class that π0A = 1
E(T0A |X0=0A) = 1−p

2 . Besides, for all i ≥ 1, πiA = πiB

and πiA = pπ(i−1)A = piπ0A.The stationary distribution follows:

∀i ∈ N : πiA = πiB =
pi (1− p)

2
.

h) Are the detailed balance equations satisfied?

Answer: The detailed balance equations are not satisfied, because there exist states i, j with pij > 0
and pji = 0.

BONUS For every n ≥ 1, compute the value of

p
(n)
0A,0A = P(Xn = 0A |X0 = 0A)
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Answer: One sees easily that p
(n)
0A,0A = 0 for n odd and that p

(2)
0A,0A = 1 − p. Likewise, direct

computations show that p
(4)
0A,0A = p

(6)
0A,0A = 1− p, . . . , so this suggests trying to prove by induction

that p
(n)
0A,0A = 1− p for all even n’s. Assume indeed p

(2n)
0A,0A = 1− p for all 1 ≤ k ≤ n (remembering

that p
(0)
0A,0A = 1 by convention). From the course, we know that

p
(2n+2)
0A,0A =

n+1∑
k=1

f
(2k)
0A,0A p

(2n+2−2k)
0A,0A =

n∑
k=1

pk−1 (1− p) (1− p) + pn (1− p) 1

=
pn − p
p− 1

(1− p)2 + pn (1− p) = 1− p

which proves the claim.

Exercise 2. (20+2 points) Let 0 < p ≤ 1
2 and 0 < q ≤ 1 be two fixed parameters and consider the

Markov chain (Xn, n ≥ 0) with state space S = {0, 1, 2} and transition matrix

P =

1− 2p p p
q 1− q 0
q 0 1− q


a) For any given values of p, q, compute the stationary distribution π of the chain X.

Answer: The system of equations for the stationary distribution π reads

π = πP ⇔


π0 = (1− 2p)π0 + qπ1 + qπ2

π1 = pπ0 + (1− q)π1
π2 = pπ0 + (1− q)π2

⇔ π1 = π2 =
p

q
π0 .

This last equation, combined with π0 + π1 + π1 = 1, gives π0 = q
q+2p , π1 = π2 = p

q+2p .

b) For any given values of p, q, compute the eigenvalues of P .

Answer: One of the eigenvalue is of course λ0 = 1. Besides the eigenvalues satisfy

Tr(P ) = λ0 + λ1 + λ2 = 3− 2p− 2q ,

det(P ) = λ0λ1λ2 = (1− 2p)(1− q)2 − 2pq(1− q) = (1− q)(1− 2p− q) .

λ1,λ2 are the roots of the polynomial X2 − 2(1− p− q)X + (1− q)(1− 2p− q) whose discriminant
is ∆ = 4(1− p− q)2 − 4(1− q)(1− 2p− q) = 4p2. We find

λ1 = 1− q , λ2 = 1− 2p− q .

c) Deduce the corresponding spectral gap γ of the chain X, as well as a tight upper bound on

‖Pn0 − π‖TV

for large values of n.
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Answer: The spectral gap is

γ = max{λ1,−λ2} =

{
q if p+ q ≤ 1 ;

2(1− p)− q if p+ q > 1 .

For large n the upperbound ‖Pn0 − π‖TV ≤ 1
2
√
π0
e−nγ is tight.

Let us now consider another Markov chain (Yn, n ≥ 0) with same state space S and transition
matrix

Q =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


d) For what values of p, q do the chains X and Y share the same stationary distribution?

Answer: Q is doubly stochastic, so its stationary distribution is the uniform distribution on S, i.e.,
(1/3, 1/3, 1/3). Clearly, π0 = π1 = π2 if and only if 0 < p = q ≤ 1

2 .

e) Among the values of p, q found in part d), which correspond to the largest spectral γ for the
chain X?

Answer: If 0 < p = q ≤ 1
2 then p+ q = 2p ≤ 1 and the spectral gap is γ = q. It is the largest when

p = q = 1
2 .

BONUS Do the spectral gaps of X and Y match in this last case?

Answer: The eigenvalues of Q are 1 with geometric multiplicity 1 and −1
2 with geometric multi-

plicity 2 (the eigenvectors are easily seen to be (1,−1, 0)T and (0, 1,−1)T ). Then the spectral gap
of Y is 1

2 , which matches with the spectral gap of X in this last case.

Exercise 3. (18 points) Let us consider the Markov chain with state space S = N∗ = {1, 2, 3, . . .},
with transition graph

and with corresponding transition matrix Ψ.

a) Let π = (π1, π2, π3, . . .) be a distribution on S such that πi > πi+1 for all i ≥ 1. Starting from
the base chain with transition matrix Ψ, design a new Markov chain chain with transition matrix
P whose stationary distribution is π. Compute the matrix P explicitly.

Answer: We use the Metropolis-Hasting algorithm to build a new chain which satisfies the detailed
balance equations for π (making π a stationary disitribution for this chain). The acceptance
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probabilities will be aij = min
{

1,
πjψji

πiψij

}
whenever ψij > 0 (note that ψij 6= 0 ⇔ ψji 6= 0). The

transition probabilities of the matrix P read

pij =



1
3 min

{
1, 2πi+1

πi

}
for j = i+ 1, i ≥ 1 ;

2
3 min

{
1, πi−1

2πi

}
for j = i− 1, i ≥ 2 ;

1− 1
3 min

{
1, 2πi+1

πi

}
− 2

3 min
{

1, πi−1

2πi

}
for j = i, i ≥ 2 ;

1− 1
3 min

{
1, 2π2π1

}
for j = i = 1 .

b) What do we know about the chain with transition matrix P and the stationary distribution π?
List all the properties you can think of.

Answer: The base chain is irreducible, aperiodic, and so is the new chain. Besides, the new chain
is built to satisfy the detailed balance equations so that π is its stationary distribution. Hence the
new chain is positive-recurrent (it is irreducible and has a stationary distribution). We have all the
properties to conclude that the chain with transition matrix P is ergodic (so that the stationary
distribution π is also a limiting distribution).

c) Compute limi→∞ pi,i+1 in the 3 following cases:

c1) πi = 1
Z

1
iq , i ≥ 1. Here, q > 1 is a fixed parameter and Z =

∑
i≥1

1
iq .

c2) πi = 1
Z exp(−i), i ≥ 1, with Z =

∑
i≥1 exp(−i).

c3) πi = 1
Z exp(−i2), i ≥ 1, with Z =

∑
i≥1 exp(−i2).

Answer: From question a), pi,i+1 = 1
3 min

{
1, 2πi+1

πi

}
. It comes

c1) pi,i+1 =
1

3
min

{
1,

2iq

(i+ 1)q

}
=

1

3
min

{
1,

2

(1 + i−1)q

}
→ 1

3
;

c2) pi,i+1 =
1

3
min

{
1,

2e−i−1

e−i

}
=

1

3
min

{
1, 2e−1

}
=

2

3e
→ 2

3e
;

c3) pi,i+1 =
1

3
min

{
1,

2e−(i+1)2

e−i2

}
=

1

3
min

{
1, 2e−1−2i

}
→ 0 .

d) For which of the above 3 example(s) does the Metropolis algorithm always accept a move from
i to i− 1, ∀i ≥ 2?

Answer: From question a), ai,i−1 = min
{

1, πi−1

2πi

}
for i ≥ 2. It comes

c1) ai,i−1 = min
{

1,
iq

2(i− 1)q

}
= min

{
1,

1

2(1− i−1)q
}
< 1 for large values of i ;

c2) ai,i−1 = min
{

1,
e−i+1

2e−i

}
= min

{
1, e/2

}
= 1 ;

c3) ai,i−1 = min
{

1,
e−(i−1)

2

2e−i2

}
= min

{
1, e−1+2i/2

}
= 1 .

So only in the last two cases does the Metropolis algorithm always accept a move from i to i− 1,
∀i ≥ 2.
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