Markov Chains and Algorithmic Applications EPFL - Fall Semester 2018-2019
Final Exam
Exercise 1. (2242 points)
Useful reminders for this exercise: For any 0 < z < 1 and k£ > 1, we have:
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Let us consider the Markov chain (X, n > 0) with state space S = {iA,iB,i € N} and the
following transition graph:
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where 0 < p < 1 is a fixed parameter.

a) For every n > 1, compute the value of

Answer: Any path starting from the state OA and returning to it has even length. Therefore

f (21)0 4 = 0 for n odd. If n is even then the only path starting from 0A and returning to it for the
first time after n steps is

0A—1A—---—=(n/2—1)A— (n/2—-1)B - 0B — 0A.

It comes féZ)OA =(1- p)pz " for n > 1 even.

b) For what values of 0 < p < 1 is state 0A recurrent? Justify your answer.
Answer: For 0 <p <1
= 2m 1
ZfOAOA_Z(l_p) z mel 1-p)- ——=1.

m=1 1_p

The state 0A is therefore recurrent for all p € (0,1).



Let now Tpa = inf{n > 1 : X,, = 0A} be the first return time to state 0A.
c) Compute E(Tpa |Xo = 04).

Answer: Remember that P(Tps = n|Xo = 04) = foA 04- Then the expected return time is
computed by making use of the second formula given in introduction:
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The last equality follows from » ;2™ = 1% and % (ﬁ) =(1-2)"2%
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d) For what values of 0 < p < 1 is state 0A positive-recurrent? Justify your answer.

Answer: The expected return time is finite, and therefore the state 0A is positive-recurrent, for all

€ (0,1).

e) Without doing any computation, explain why does the chain (X, n > 0) admit a unique sta-
tionary distribution 7 for every value of 0 < p < 1.

Answer: The chain is irreducible and positive-recurrent (we proved 0A is positive-recurrent and
the chain has a unique equivalence class). By a theorem seen in class the existence and uniqueness
of a stationary distribution 7 follows.

f) Show by induction on ¢ that m;4 = m;p for every i € N.

Answer: The equation m = 7P reads
moa =mop and Vi >1:mia=pri_1ya, Ta-1p = (1 = p)i—1)a + TiB.

Hence mip — mia = m(i—1)p — (1 = P)T(i—1)a — PT(i—1)a = T(i—1)B — T(i—1)A for all i > 1. The result
follows by induction, as mp4 = 7o B.

g) Use f) to compute the stationary distribution .

1 _1-p : ; R
E(Toa Xo=0A) = 2 - Besides, for all i > 1, mj4 = mp

and m4 = pr_1)a = p'moa.The stationary distribution follows:

p'(1-p)
Rt

Answer: We have seen in class that mgq =

VieN: mga=mp=

h) Are the detailed balance equations satisfied?

Answer: The detailed balance equations are not satisfied, because there exist states 4, j with p;; > 0
and pj; = 0.

BONUS For every n > 1, compute the value of

o = P(Xn = 04| Xo = 04)



Answer: One sees easily that pg;) oa = 0 for n odd and that péii oa = 1 —p. Likewise, direct
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computations show that py4 o4 = Pgioa = p, ..., so this suggests trying to prove by induction

that p(()iLA),OA =1 —p for all even n’s. Assume indeed p((f:%A =1—pforall 1 <k <n (remembering

that pé%o 4 = 1 by convention). From the course, we know that
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which proves the claim.

Exercise 2. (20+2 points) Let 0 < p < % and 0 < ¢ <1 be two fixed parameters and consider the
Markov chain (X, n > 0) with state space S = {0, 1,2} and transition matrix

1-2p p D
P = q 1—gq 0

q 0 1l-gq
a) For any given values of p, g, compute the stationary distribution 7 of the chain X.

Answer: The system of equations for the stationary distribution 7 reads

mo = (1 — 2p)mo + qm1 + qm2
T=7mP & (m =pro+ (1 —q)m <:>7T1:7T2:§7T0.
= pmo + (1 — ¢)m2

. . . . _ . _ q . _ _D
This last equation, combined with 7o 4+ m + 7 = 1, gives mg = oy 1= T2 = o

b) For any given values of p, ¢, compute the eigenvalues of P.

Answer: One of the eigenvalue is of course A\g = 1. Besides the eigenvalues satisfy

Tr(P) =X+ M + X2 =3—2p—2q,
det(P) = AAidz = (1 = 2p)(1 —q)> = 2pg(1 —q) = (1 —q)(1 —2p —q).

A1,)\g are the roots of the polynomial X2 —2(1 —p—¢)X + (1 —¢)(1 — 2p — q) whose discriminant
is A=4(1-p—q)?2—4(1 —q)(1 —2p — q) = 4p*. We find

M=1-q, Aa=1-2p—q.

¢) Deduce the corresponding spectral gap v of the chain X, as well as a tight upper bound on
1P — 7|y

for large values of n.



Answer: The spectral gap is

q ifp+q<1;
201—p)—q ifp+qg>1.

v =max{\, =} = {

For large n the upperbound ||Pj — 7|ty < 2\/1%6—717 is tight.

Let us now consider another Markov chain (Y,, n > 0) with same state space S and transition

matrix
0 1/2 1/2
Q=112 0 1/2
1/2 1/2 0

d) For what values of p, ¢ do the chains X and Y share the same stationary distribution?

Answer: @ is doubly stochastic, so its stationary distribution is the uniform distribution on S, i.e.,
(1/3,1/3,1/3). Clearly, m = m = m if and only if 0 <p =g < 3.

e) Among the values of p,q found in part d), which correspond to the largest spectral + for the
chain X7

Answer: f 0 <p=g¢q < % then p+ ¢ = 2p < 1 and the spectral gap is v = ¢. It is the largest when
1

BONUS Do the spectral gaps of X and Y match in this last case?

Answer: The eigenvalues of ) are 1 with geometric multiplicity 1 and —% with geometric multi-
plicity 2 (the eigenvectors are easily seen to be (1,—1,0)” and (0,1, —1)7). Then the spectral gap
of Y is %, which matches with the spectral gap of X in this last case.

Exercise 3. (18 points) Let us consider the Markov chain with state space § = N* ={1,2,3, ...},
with transition graph

1/3 1/3 1/3
m m m /,-—-—-x‘
> > > 7 A S
2/3 2/3 2/3
and with corresponding transition matrix W.

a) Let m = (my,ma,m3,...) be a distribution on S such that m; > ;41 for all ¢ > 1. Starting from
the base chain with transition matrix ¥, design a new Markov chain chain with transition matrix
P whose stationary distribution is 7. Compute the matrix P explicitly.

Answer: We use the Metropolis-Hasting algorithm to build a new chain which satisfies the detailed
balance equations for m (making 7 a stationary disitribution for this chain). The acceptance



probabilities will be a;; = min {1 Lw“} whenever 1;; > 0 (note that 1;; # 0 < 1;; # 0). The

? Wi

transition probabilities of the matrix P read

[ min {1, 2221} for j =i +1,i > 1;
2 min 1,’;;;} for j=i—1,i>2;

Pig = lf%min 1,27;;%}7%min{1,73;;} for j =1i,1>2;
|1 - 4 min 127%} for j=i=1.

b) What do we know about the chain with transition matrix P and the stationary distribution 7?
List all the properties you can think of.

Answer: The base chain is irreducible, aperiodic, and so is the new chain. Besides, the new chain
is built to satisfy the detailed balance equations so that 7 is its stationary distribution. Hence the
new chain is positive-recurrent (it is irreducible and has a stationary distribution). We have all the
properties to conclude that the chain with transition matrix P is ergodic (so that the stationary
distribution 7 is also a limiting distribution).

c) Compute lim;_,o pii+1 in the 3 following cases:

C].) v
c2)

C3) v

i > 1. Here, ¢ > 1 is a fixed parameter and Z =), zlq

1
)

exp(—i), i > 1, with Z = 7, exp(—i).

N= Nl= N=

exp(—i?), i > 1, with Z = D1 exp(—i?).

. . 2m;
Answer: From question a), p; ;41 = %mln {1, %} It comes
7
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c3) piiy1 = fmin{l, 672} - fmin{lv%—l—m} 0.

d) For which of the above 3 example(s) does the Metropolis algorithm always accept a move from
itoi—1,Vi>2?

Answer: From question a), a;;—1 = min {1, 7;’;1 } for 1 > 2. It comes

‘q 1
C]_) Q-1 = min {1, ﬁ} = min {1, m} < 1 for large values of Z7
o—it1
c2) a;;—1 = min {1, 27_} =min{1,e/2} =1;
e
e_(i_l)Q 142
c3) aii1 = min{l, F} = min{l,e_ + 1/2} ~1.

So only in the last two cases does the Metropolis algorithm always accept a move from i to ¢ — 1,

Vi > 2.



