Final Exam

Surname:
.First name:
. Section:

Exercise 1. (12 points) For each statement below, tell whether it is true or false, and provide a justification if the answer is "true" / a counter-example if the answer is "false".
a) Any finite Markov chain admits at least one stationary distribution.
b) If P is the transition matrix of a Markov chain, then $\frac{P+P^{T}}{2}$ is also a transition matrix.
c) If P is the transition matrix of a 3 -periodic Markov chain, then $P^{3}=I$.
d) Let X, Y be two irreducible Markov chains evolving independently on a finite common state space \mathcal{S}, according to a common transition matrix P, but with two different initial distributions. Then $\mathbb{P}\left(\exists n \geq 1\right.$ such that $\left.X_{n}=Y_{n}\right)=1$.

Exercise 2. (20 points) Let us consider the Markov chain ($X_{n}, n \geq 0$) with state space

$$
\mathcal{S}=\{0\} \cup\left\{i A, i \in \mathbb{N}^{*}\right\} \cup\left\{i B, i \in \mathbb{N}^{*}\right\} \cup\left\{i C, i \in \mathbb{N}^{*}\right\} \quad\left(\text { where } \mathbb{N}^{*}=\{1,2,3, \ldots\}\right)
$$

and transition matrix P given by

$$
p_{0,1 A}=p_{0,1 B}=p_{0,1 C}=\frac{1}{3} \quad p_{1 A, 0}=p_{1 B, 0}=p_{1 C, 0}=\frac{2}{3}
$$

and for $i \in \mathbb{N}^{*}$:

$$
p_{i A,(i+1) A}=p_{i B,(i+1) B}=p_{i C,(i+1) C}=\frac{1}{3} \quad p_{(i+1) A, i A}=p_{(i+1) B, i B}=p_{(i+1) C, i C}=\frac{2}{3}
$$

a) Is the chain X irreducible? aperiodic?
b) Compute the unique stationary distribution π of the chain X. Is the detailed balance equation satisfied?
c) Prove that the chain X is positive-recurrent.
d) Compute $\mathbb{E}\left(T_{0} \mid X_{0}=0\right)$, where $T_{0}=\inf \left\{n \geq 1: X_{n}=0\right\}$.
e) Is the distribution π also a limiting distribution for the chain X ?

Consider now the chain $\left(Y_{n}, n \geq 0\right)$ with same state space \mathcal{S} and transition matrix $Q=P^{2}$.
f) Compute all the transition probabilities in Q.
g) Is the chain Y irreducible? aperiodic?
h) Does it hold that the distribution π computed above is also a stationary distribution for the chain Y ? If yes, is it the unique stationary distribution? Justify.
i) Compute $\lim _{n \rightarrow \infty} \mathbb{P}\left(Y_{n}=0 \mid Y_{0}=0\right)$.

Exercise 3. (8 points) Let $\left(X_{n}, n \geq 0\right)$ be a Markov chain with state space $\mathcal{S}=\{-, 0,+\}$ and transition matrix satisfying

$$
p_{+,-}=p_{-,+}=0, \quad p_{+, 0}=p_{-, 0}=a \quad \text { and } \quad p_{0,+}=p_{0,-}=b / 2
$$

where $0<a, b<1$.
a) Complete the transition matrix P.
b) Compute its eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \lambda_{2}$.
c) Deduce the value of the spectral gap γ.
d) Under which minimal condition on the parameters a, b does it hold that $\gamma=\lambda_{0}-\lambda_{1}$?

Exercise 4. (20 points) We consider the Ising distribution on two vertices $\{1,2\}$. Let $\underline{s}=$ $\left(s_{1}, s_{2}\right) \in\{-1,+1\}^{2}$ and

$$
\pi_{\beta}(\underline{\mathrm{s}})=\frac{\exp \left(\beta s_{1} s_{2}\right)}{4 \cosh (\beta)}
$$

with $\beta \geq 0$. Recall that $\cosh (x)=\frac{1}{2}(\exp (x)+\exp (-x))$.

Consider the Metropolis-Hastings Markov chain ($\underline{\mathrm{S}}_{n}, n \geq 0$) defined as follows (starting from the initial uniform distribution on $\{-1,+1\}^{2}$):

- at step n, select a vertex $v \in\{1,2\}$ uniformly at random;
- propose the move $\underline{\mathrm{S}}^{(n)} \rightarrow \underline{\mathrm{S}}^{(n+1)}$, where $S_{v}^{(n)}$ is flipped with probability $0<q \leq 1$;
- accept the move according to the usual Metropolis-Hastings rule.
a) Draw the transition graph of the Markov chain ($\underline{\mathrm{S}}_{n}, n \geq 0$).

Consider now the magnetization at time $n \geq 0$:

$$
M_{n}=S_{1}^{(n)}+S_{2}^{(n)}
$$

b) Explain why the process $\left(M_{n}, n \geq 0\right)$ is also a Markov chain.
c) Compute its state space \mathcal{S} and its transition matrix P.
d) Show that the chain $\left(M_{n}, n \geq 0\right)$ is ergodic for $0<q \leq 1$ and $0 \leq \beta<+\infty$. Compute its limiting and stationary distribution π.
e) Compute the spectral gap γ of the chain $\left(M_{n}, n \geq 0\right)$.
f) When $q=\frac{1}{2}$, deduce a tight upper bound on $\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}}$ for $n \geq 1$.
g) For what value of q (as a function of β) is the spectral gap γ maximized?

