Statistics for Genomic Data Analysis

Affymetrix QA/QC ; Robust regression

http://moodle.epfl.ch/course/view.php?id=15271

(Pf)

Statistics for Genomic Data Analysis

Affymetrix recommended QC

- Sample prep QC
 - pre-hyb QC
 - bioanalyzer profiles
 - preempt hybing poor quality
- Data QC
 - post-hyb QC
 - visual inspection of image, oligo b2, grid alignment
 - metrics in rpt file

Oligo B2 Performance

Spike-ins and controls

- Unlabelled poly-A controls: dap, lys, phe, thr, tryp; used to monitor wet lab work
- Hybridization controls: bioB, bioC, bioD, cre
- Housekeeping/control genes : actin, gapdh
 - 3' to 5' signal intensity ratios of control probe sets

Control Spikes

Spike	Contro	ols:										
Probe	Set		Sig(5	')	Det(5	')	Sig(M'	')	Det (M	')	Sig(3')	Det(3')
	Sig(al	Ll)	Sig(3	'/5')								
BIOB		60.8	Μ	63.7	P	63.9	Α	62.81	1.05			
BICC		134.7	P			75.1	P	104.9	L	0.56		
BIODN		105.0	P			677.7	P	391.3	5	6.46		
CREX		907.2	P			1486.	7	P	1196.	97	1.64	
DAPX		14.6	А	8.5	А	1.8	A	8.30	0.12			
LYSX		1.4	А	8.4	А	11.0	A	6.92	8.09			
PHEX		3.7	А	1.8	А	5.3	A	3.60	1.46			
THRX		1.4	А	4.0	А	3.3	A	2.91	2.39			
TRPNX		4.2	А	4.3	А	1.7	A	3.42	0.40			

BioB should be P ~ 70% of the time
BioC, BioD, cre should always be P

Internal control genes

Housekeeping Cantrols:									
Probe Set	Sig(5")	Det (5")	Sig(M [™])	Det(M)	Sig(3")	Det (3'	')		
Sig(all)	Sig(3'/5')								
HMISE34M97935	26.4 P	149 . 6M	272.6 P	149.54	10.31				
HMRE/M10098	3.1 A	5.0 A	10 . 7 A	6.26 3.49					
HMATHIMB3197	3300.4	Р 305.	6 P	3221.6	P 3	3175.87	0.98		
H5AC07/X00351	7532.9	P 8839.	1 P	6645.4	P 7	672.49	0.88		
M27830	65.3 P	35.7 A	144.4 A	81.81 2.21					

actin, gapdh should have all P 3' /5' ratio < 3

Statistics for Genomic Data Analysis

Quality metrics in Affy rpt file

- % Present call: 20-50% ; consistency
- Scaling Factor:
 - Target/(2% trimmed mean signal values);
 consistency
- P/A calls, SF : measure how much is PM > MM
- Background: under 100 ; consistency
 - Average signal in lowest 2%
- Noise (RawQ): <u>1.5-3</u> is ok
 - Pixel-to-pixel variation among probe cells used to calculate the background Statistics for Genomic Data Analysis Lec 3

MAS 5 algorithms

- Present calls : p-value from Wilcoxon signed rank test based on R_i = (PM_i-MM_i)/(PM_i+MM_i)
 - *H*: median ($R_i \tau$) = 0 vs. *A*: median ($R_i \tau$) > 0

- P = `present': p < 0.04 ; A = `absent': p ≥ 0.06 ; M = `marginal': 0.04
- <u>Signal</u>: log₂(S) = Σ_i w_i log₂ (PM_i MM_i^{*}),
 with w_i Tukey biweight from initial fit
- Tukey biweight: $w_i = (1 (r_i / c^2)^2)$ if $|r_i| \le c$;
 = 0 otherwise
 Lec 3

% Present

 Total Probe Sets: 22283

 Number Present:
 9235
 41.4%

 Number Absent:
 12666
 56.8%

 Number Marginal:
 382
 1.7%

- Average Signal (P):413.4Average Signal (A):28.8Average Signal (M):87.6Average Signal (All):189.2
- % P ~ 20 50%
- 'good indicator of assay performance'
- similar values across replicates (also SF, RawQ)

Background

Should be under 100similar values across replicates

Statistics for Genomic Data Analysis

Problems with these measures

- Relate to the experimental process, not directly to the end result (gene expression)
- Quality of spike-in data may not be representative of whole chip quality
- In general, thought, inferences (DE, clustering, etc.) are based on ME
- Single chip measures, which do not put each chip in the context of the others
- By-products of RMA calculation (robust regression) can also provide quality info

What is 'quality'?

- It is useful to distinguish between the various facets of the general term 'quality'
- In chronological order:
 - condition of the starting RNA (*RNA integrity*)
 - caliber of the experimental process and resulting hybridization (*noise*)
 - acceptability of the resulting expression measures:
 - array adjustment
 - outlier identification

New quality measures - RMA-QC

- Aims:
 - To use QA/QC measures directly based on expression summaries and that can be used in a routine way
 - To examine whether chips are different in a way that affects expression summaries
- Focus on weights and residuals from fits in probe intensity models

RMA - Additive model for gene expression based on probe intensity data

Probe-level model for gene expression:

- For *identifiability*, fit with constraint $\Sigma_i p_i = 0$
- Model fit (separately) for each probe set

RMA: Summary

- Chips analysed in sets (e.g. an entire experiment)
- Use only PM, ignore MM
- Background correct PM on raw intensity scale
- Quantile Normalization of log₂(PM*)
- Assume additive model (on log₂ scale) for each probeset: log₂ normalized(PM_{ij}*) = c_i + p_j + e_{ij}
- Parameters c_i provide measure of gene expression for each chip
- Estimate parameters using a *robust* method
 - median polish quick
 - robust linear model yields quality diagnostics

Simple linear modeling: which line?

 There are many possible lines that could be drawn through the cloud of points in the scatterplot ...

How to choose?

Lec 3

Least Squares

Q: Where does the regression equation come from?

A: It is the line that is 'best' in the sense that it *minimizes* the sum of the *squared* errors (residuals) in the vertical (Y) direction

What is robustness?

- The term *robustness* is used to mean several possible things:
 - Lack of sensitivity to *distributional* assumptions (especially normality)
 - Lack of sensitivity to *outliers*
 - Small sets of the data *don't have a strong influence*

Why robust (vs. LS)?

- Want fitting procedure to produce good estimates in the presence of various types of outliers:
 - probe outliers : e.g. probes that `don't work'
 - chip outliers : chips that are unusual
 - Image artifacts
- Want procedure to assess quality
- Distinguish between approach based on *outlier identification /exclusion* and approach based on *modeling / quality weights*

Statistics for Genomic Data Analysis

Median polish algorithm

$$\begin{array}{c|cccc} y_{11} & L & y_{1J} & 0 \\ M & O & M & N \\ \hline y_{I1} & L & y_{IJ} & 0 \\ \hline 0 & L & 0 & 0 \\ \hline \end{array}$$
Sweep Columns
Iterate

Imposes Sweep Rows Constraints $median_i e_{ii} = median_i e_{ii} = 0$ $\hat{\varepsilon}_{11}$ L $\hat{\varepsilon}_{1J}$ $\hat{\alpha}_{1}$ M O M M $\hat{\varepsilon}_{I1}$ L $\hat{\varepsilon}_{IJ}$ \hat{lpha}_{I} $\hat{\beta}_1$ L $\hat{\beta}_J$ ŵ

Statistics for Genomic Data Analysis

Median polish - example

	1	1	2	3	3	0
	2	4	5	7	5	0
	3	3	6	6	7	0
probe	2	3	5	6	5	array
	-1	-2	-3	-3	-2	-2
	0	1	0	1	0	0
	1	0	1	0	2	1
probe						array
	1	0	-1	-1	0	
	0	1	0	1	0	
	0	-1	0	-1	1	
probe	0	0	0	-1	0	array

Statistics for Genomic Data Analysis

Statistics for Genomic Data Analysis

Robust regression

- Idea: *downweight* observations that produce large residuals
- More computationally intensive than least squares regression (which gives equal weight to each observation)
- Use maximum likelihood if can assume specific error distribution
- When not, use *M*-estimators

Robust regression in microarray analysis

- There are many ways that robust regression can be/is used in analysis of microarray data
- We will use it in two ways:
 - for *quantifying gene expression* measured with Affymetrix GeneChips (like we saw with RMA)
 - for assessing quality of Affymetrix GeneChip gene expression measures (coming up next)

Loss, weight functions

- Least squares: 'lose' square of vertical error
- Here, squared error = loss function
- Each observation has equal weight
- Problem: *outliers* can have strong effect on estimates (slope, intercept of line; model parameters more generally)
- Solution: could use other loss/weight functions

Examples of Loss, Weight Functions

Lec 3

More weight functions

Statistics for Genomic Data Analysis

Robust regression estimation

- Robust procedures *perform well* under a range of possible models
- Facilitates outlier detection
- Good estimates even if some bad data points
- Can identify `bad' probe behavior:
 - some probes may cross hybridize to nontarget fragments
 - some may not bind at all to target fragment

M-estimators

- 'Maximum likelihood type' estimators
- Assume independent errors with distribution $f(\varepsilon)$
- Parameter estimates solutions to

$$\min_{p_i,c_j} \sum_{i,j} \rho\left(\frac{Y_{ij} - p_i - c_j}{\hat{\sigma}}\right) = \min_{p_i,c_j} \sum_{i,j} \rho(u_{ij})$$

- ρ(x) is a (bounded for robustness) positive, symmetric function increasing more slowly than x
- $\hat{\sigma}$ is an estimate of scale (eg. MAD)
- eg, $\rho(u) = u^2$ corresponds to minimizing the sum of squares

M-estimation procedure

- To minimize $\Sigma_i \rho\{(Y_i \underline{x}_i' \underline{\beta})/s\}$ wrt the β 's, take derivatives and equate to 0 (`normal equations')
- Resulting equations *do not have an explicit solution* in general
- Solve by *iteratively reweighted least squares* (IRLS) with weights

$$w_{ij} = \rho'(u_{ij}) / u_{ij} = \psi(u_{ij})$$

 Acts like automatic outlier rejector, since large residual values lead to very small weights

IRLS algorithm

- Weights at each iteration are calculated by applying the loss function to the residuals obtained from the previous iteration
- The weight function gives *lower weight* to points that do not fit well ('outliers')
- The results are *less sensitive* to outliers in the data (compared to OLS)

Robust fit by IRLS for each probe set

Use Huber loss function p:

- $\rho(e) = e^2/2$ for $|e| \le k$; k $|e| - k^2/2$ for |u| > k

 Starting with robust (or LS) fit, at each iteration:

-
$$r_{ij} = Y_{ij}$$
 - current $est(p_j)$ - current $est(c_i)$
- $S = mad(r_{ij}) \cdot c$ - robust est. of scale of σ
- $u_{ij} = r_{ij}/S$ - rescaled residuals
- $w_{ij} = \psi(|u_{ij}|)/|u_{ij}|$ - weights used in next fit
(for Huber loss, $w = 1$ if $|u| \le k$; $k/|u|$ if $|u| > k$)

Next step estimates obtained by (weighted) LS Statistics for Genomic Data Analysis Lec 3

Quality Assessment using PLM

- PLM = Probe Level Model
- PLM quantities useful for assessing chip quality (expression measure)
 - Weights
 - Residuals
 - Standard Errors (NUSE)
- Expression values relative to (virtual) 'median' chip
 - (RLE = Relative Log Expression)

Role of model components in QA/QC

- Residuals, weights now >200K per array
 - *summarize* to produce a chip index of quality
 - view as chip *image*, analyse spatial patterns.
 - scale of residuals for probe set models can be *compared* between experiments
- Chip effects > 20K (probe sets) per array
 - can examine distribution of relative expressions across arrays
- Probe effects > 200K per model (HG_U133A)
 - can be compared across fitting sets

Chip weight pseudo-images

- Image indicates the (robust regression) weight associated with the probe
- Areas of *low weight* (outliers) are greener, high weights are light gray
- 'More color' ⇔ 'worse chip' (more of an outlier)

Using residuals from the fitting

- Many types of *problems* will be reflected by *inflated residuals* from the fits to the probe + chip effect models
- Summarizing the residuals on a chip can provide good discrimination among chips producing data of varying quality

Statistics for Genomic Data Analysis

Chip index of relative quality

We assess gene expression index (eg, RMA value) variability for gene (probe set) k (=1, ..., G genes) by its unscaled SE (j indexes probes):

unscaled
$$SE(\hat{c}_{ki}) = 1 / \sqrt{\sum_{j} w_{kij}}$$

We then normalize by dividing by the median unscaled SE over the chip set (i):

$$NUSE(\hat{c}_{ki}) = \frac{1}{\sqrt{\sum_{j} w_{kij}}} median_i (1/\sqrt{\sum_{j} w_{kij}}) Lec 3$$

NUSE

- NUSE = 'Normalized Unscaled SE' estimate SE(expression estimates), summarize at the chip level
- Each chip will have a NUSE for each probe set, which can be summarized by the median
- This provides one useful summary of the residual variability, and can be used to judge quality relative to other chips
- Median NUSE fluctuates around 1
- High values (> 1.05) indicate `worse' chips (unusual / outliers) Statistics for Genomic Data Analysis

RLE

- How much are robust summaries affected?
- Can gauge reproducibility of expression measures by summarizing the distribution (across genes) of *relative log expressions*
- RLE_i = RMA_i reference expression_i (i = 1, ..., p)
- For reference expression, can use median expression value for that gene in a set of chips
- This provides one useful summary of the residuals, and can be used to judge quality relative to other chips

RLE summaries

- IQR(RLE) measures variability
- Includes Noise + DE in biological replicates
- When biological replicates are similar (eg. RNA from same tissue type), can typically detect processing effects with IQR(RLE)
- Median(RLE) should be close to zero if
 # up-regulated genes ≈ down-regulated genes
- Can combine IQR(RLE)+|Median(RLE)| to give measure of chip expression measurement error

Example: HD

- About 70 individuals, U133A, B chips on each of 3 tissues
- Fitted RMA models
- Displays: NUSE plot, chip pseudo-image of residual weights

Title = Chip Number - Median NUSE, %P, SF Subtitle = ChipId

F. cerebellum.A.1 P. cerebellum.A.1 - Boxplots of NUSE values

(PA)

Statistics for Genomic Data Analysis

F. cerebellum.A.1 P. cerebellum.A.1 - Boxplots of NUSE values

Statistics for Genomic Data Analysis

Statistics for Genomic Data Analysis

Measuring quality

- Different measures view quality from different (but overlapping) perspectives
- Affymetrix measures (.rpt file) are most prominent in the *noise* and *integrity* aspects, but also touch on *array adjustment*
- RMA-QC measures dominate in *outlier identification*, but also include *array adjustment*

Conclusions

- PLM-based quality assessment appears to show good sensitivity to chip problems that impact measures of expression
- Provides useful basis for chip quality, inclusion/exclusion decisions
- RMA-QC measures implemented in the affyPLM package (BioConductor)
- affyPLM documentation gives more details of estimation procedure
- <u>http://plmimagegallery.bmbolstad.com/</u>

Exploratory data analysis/quality assessment

- PM signal intensity:
 - pseudo-images
 - histograms
 - boxplots
 - pairwise scatterplots (MA version)
- Pseudo-images of weights and residuals
- Boxplots of NUSE values
- Boxplots of *RLE values*
- Boxplots of normalized signal values (RMA)

