
Artificial Neural Networks (Gerstner). Exercises for week 5

Policy gradient methods

Exercise 1. Single neuron as an actor1

Assume an agent with binary actions Y ∈ {0, 1}. Action y = 1 is taken with a probability
π(Y = 1|~x; ~w) = g(~w ·~x), where ~w are a set of weights and ~x is the input signal that contains the state
information. The function g is monotonically increasing and limited by the bounds 0 ≤ g ≤ 1.

For each action, the agent receives a reward R(Y, ~x).

a. Calculate the gradient of the mean reward E[R] =
∑

Y,~xR(Y, ~x)π(Y |~x; ~w)P (~x) with respect to
the weight wj .

Hint: Insert the policy π(Y = 1|~x; ~w) = g(
∑

k wkxk) and π(Y = 0|~x; ~w) = 1 − g(
∑

k wkxk).
Then take the gradient.

b. The rule derived in (a) is a batch rule. Can you transform this into an ‘online rule’?

Hint: Pay attention to the following question: what is the condition that we can simply ‘drop
the summation signs’?

Exercise 2. Policy gradient for binary actions

a. Find an online policy gradient rule for the weights ~w for the same setup as in Exercise 1 by
calculating the gradient of the log-likelihood log π(Y |~x; ~w) with respect to the weights.

Hint : the policy π can be written as π(Y |~x; ~w) = (1− ρ)1−Y ρY with ρ = g(~w · ~x).

b. Rewrite your update rule for weight wj in the form

∆wj = F (~x, ~w,R) [Y − E[Y ]]xj

and give the expression for the function F .

Hint : Take your result from part a, use E[y] = g(~w · ~x) and pull out a factor 1
g(1−g) .

Exercise 3. Policy gradient

a. Other parameterizations of Exercise 2: Consider your solution to Exercise 2. What happens
to the policy gradient rule if the likelihood ρ of action 1 is parameterized not by the weights ~w
but by other parameters: ρ = ρ(θ)? Derive a learning rule for θ.

b. Generalization to the natural exponential family: The natural exponential family is
a family of probability distributions that is widely used in statistics because of its favorable
properties. These distributions can be written in the form

p(Y ) = h(Y ) exp (θY −A(θ)) .

This family includes many of the standard probability distributions. The Bernoulli, the Poisson
and the Gaussian distribution are all member of this family. A nice property of these distributions
is that the mean can easily be calculated from the function A(θ):

E[Y ] = A′(θ) :=
dA

dθ
(θ) .

1Will be started in class.



Assume that the policy π(Y |~x; θ) is an element of the natural exponential family. Show that the
online rule for the policy gradient has the shape:

∆θ = R(Y − E[Y ]) .

Can you give an intuitive interpretation of this learning rule?

c. The Bernoulli distribution: Apply your result from (b) to the case of Exercise 2.

Exercise 4. Subtracting the mean

You have two stochastic variables, x and y with means E[x] and E[y]. Angles denote expectations.
We are interested in the product z = (x− b)(y − E[y]) with a fixed parameter b.

a. Show that E[z] is independent of the choice of the parameter b.

b. Show that E[z2] is minimal if b = E[xf(y)]
E[f(y)] , where f(y) = (y − E[y])2.

Hint : write E[z2] = F (b) and set dF
db = 0.

c. What is the optimal b, if x and f(y) are approximately independent?

d. Make the connection to policy gradient rules.

Hint : take x = r (reward) and y the action taken in state s. Compare with the policy gradient
formula of the simple 1-neuron actor. What can you conclude for the best value of b? Consider
different states s. Why should b depend on s?

Exercise 5. Computer exercises: Environment 2 (part 1)1

Download the Jupyter notebook of the 2nd computer exercise and complete it until the end of Section
1.3.4 (Reinforce with Baseline).

1Start this exercise in the second exercise session of week 5.


