
Artificial Neural Networks (Gerstner). Solutions for week 5

Policy gradient methods

Exercise 1. Single neuron as an actor1

Assume an agent with binary actions Y ∈ {0, 1}. Action y = 1 is taken with a probability
π(Y = 1|~x; ~w) = g(~w ·~x), where ~w are a set of weights and ~x is the input signal that contains the state
information. The function g is monotonically increasing and limited by the bounds 0 ≤ g ≤ 1.

For each action, the agent receives a reward R(Y, ~x).

a. Calculate the gradient of the mean reward E[R] =
∑

Y,~xR(Y, ~x)π(Y |~x; ~w)P (~x) with respect to
the weight wj .

Hint: Insert the policy π(Y = 1|~x; ~w) = g(
∑

k wkxk) and π(Y = 0|~x; ~w) = 1 − g(
∑

k wkxk).
Then take the gradient.

b. The rule derived in (a) is a batch rule. Can you transform this into an ‘online rule’?

Hint: Pay attention to the following question: what is the condition that we can simply ‘drop
the summation signs’?

Solution:

a. ∂
∂wj

E[R] =
∑

~x P (~x)[R(y = 1, ~x)−R(y = 0, ~x)]g′(~w · ~x)xj

b. If the online statistics matches the true statistics of the data in the batch, then we can drop the
sum-signs. However, here this is not the case because the two outcomes y = 1 and y = 0 do not
have equal probabilities. Therefore, the weight-factors in y need to be added. This can be done
by the log-likelihood trick explained in class.

Exercise 2. Policy gradient for binary actions

a. Find an online policy gradient rule for the weights ~w for the same setup as in Exercise 1 by
calculating the gradient of the log-likelihood log π(Y |~x; ~w) with respect to the weights.

Hint : the policy π can be written as π(Y |~x; ~w) = (1− ρ)1−Y ρY with ρ = g(~w · ~x).

b. Rewrite your update rule for weight wj in the form

∆wj = F (~x, ~w,R) [Y − E[Y ]]xj

and give the expression for the function F .

Hint : Take your result from part a, use E[y] = g(~w · ~x) and pull out a factor 1
g(1−g) .

Solution:

1Will be started in class.



a. Let’s first calculate the derivative of log π(Y |~x; ~w) with respect to wj , using the hint:

∂

∂wj
log π(Y |~x; ~w) =

1

π(Y |~x; ~w)

∂

∂wj
π(Y |~x; ~w)

=
1

(1− ρ)1−Y ρY
∂

∂wj

[
(1− ρ)1−Y ρY

]
=

1

(1− ρ)1−Y ρY
[
−(1− Y )(1− ρ)−Y ρY + Y (1− ρ)1−Y ρY−1

] ∂

∂wj
ρ

=

[
−(1− Y )(1− ρ)−Y

(1− ρ)1−Y
+
Y ρY−1

ρY

]
g′(~w · ~x)xj

=

[
−(1− Y )

(1− ρ)
+
Y

ρ

]
g′(~w · ~x)xj .

Now let’s consider the term ∂
∂wj

E[R] again. We can write

∂

∂wj
E[R] =

∑
Y,~x

R(Y, ~x)
∂

∂wj
π(Y |~x; ~w)P (~x)

=
∑
Y,~x

R(Y, ~x)π(Y |~x; ~w)
1

π(Y |~x; ~w)

∂

∂wj
π(Y |~x; ~w)︸ ︷︷ ︸

∂
∂wj

log π(Y |~x;~w)

P (~x)

= E
[
R

∂

∂wj
(log π)

]
,

where we multiplied by π(·)/π(·) = 1 and identified the derivative of the log. This suggest an
online rule with an update term:

∆wj = R
∂

∂wj
log π(Y |~x; ~w) = R

[
Y

ρ
− (1− Y )

(1− ρ)

]
g′(~w · ~x)xj . (1)

b. Equation 1 can be simplified as

∆wj = R

[
Y − ρ
ρ(1− ρ)

]
g′(~w · ~x)xj =

Rg′

g(1− g)
[Y − E[Y ]]xj , (2)

which has the form of ∆wj = F (~x, ~w,R) [Y − E[Y ]]xj with

F (~x, ~w,R) =
Rg′(~w · ~x)

g(~w · ~x) (1− g(~w · ~x))
.

Exercise 3. Policy gradient

a. Other parameterizations of Exercise 2: Consider your solution to Exercise 2. What happens
to the policy gradient rule if the likelihood ρ of action 1 is parameterized not by the weights ~w
but by other parameters: ρ = ρ(θ)? Derive a learning rule for θ.

b. Generalization to the natural exponential family: The natural exponential family is
a family of probability distributions that is widely used in statistics because of its favorable
properties. These distributions can be written in the form

p(Y ) = h(Y ) exp (θY −A(θ)) .



This family includes many of the standard probability distributions. The Bernoulli, the Poisson
and the Gaussian distribution are all member of this family. A nice property of these distributions
is that the mean can easily be calculated from the function A(θ):

E[Y ] = A′(θ) :=
dA

dθ
(θ) .

Assume that the policy π(Y |~x; θ) is an element of the natural exponential family. Show that the
online rule for the policy gradient has the shape:

∆θ = R(Y − E[Y ]) .

Can you give an intuitive interpretation of this learning rule?

c. The Bernoulli distribution: Apply your result from (b) to the case of Exercise 2.

Solution:

a. Other parameterizations: Replacing ~w ·~x by θ, we can follow the same steps as in Exercise 2.
The only difference comes in the expression of dρ

dθ , for which we don’t have an explicit expression
anymore. The learning rule is:

∆θ = R

[
Y

ρ
− (1− Y )

(1− ρ)

]
ρ′(θ). (3)

b. Generalization to the natural exponential family: Let’s calculate ∂
∂θ log p(Y ):

∂

∂θ
log p(Y ) =

∂

∂θ
log [h(Y ) exp (θY −A(θ))]

=
1

h(Y ) exp (θY −A(θ))
· h(Y ) exp (θY −A(θ)) ·

(
Y −A′(θ)

)
= Y −A′(θ) = (Y − E[Y ]).

Therefore:

∆θ = R
∂

∂θ
logP (y) = R (Y − E[Y ]) .

This learning rule will look for correlation between the reward and the deviations of Y from its
expectation value. If R is systematically positive when Y is higher than its expectation value, θ
will increase, leading to higher probabilities of higher Y . Inversely, if R is systematically negative
when Y is higher than its expectation value, theta will decrease and the probability of lower Y
will decrease.

c. For the Bernoulli distribution with Y ∈ {0, 1} and p(Y = 1) = ρ, we have

p(Y ) = ρY (1− ρ)1−Y = exp

(
Y log

ρ

1− ρ
− log

1

1− ρ

)
= h(Y ) exp (θY −A(θ)) ,

where

h(Y ) = 1

θ = log
ρ

1− ρ
⇔ ρ =

1

1 + e−θ

A(θ) = log
1

1− ρ
= log

(
1 + eθ

)
.



From part (b), we know that ∆θ = R (Y − E[Y ]). To apply apply this update rule to the case
of Exercise 2, we first use the fact that ρ = g(~w · ~x) and write

θ = log
ρ

1− ρ
= log

g(~w · ~x)

1− g(~w · ~x)
.

We can use this and write

∆wj =
∂

∂wj
E[R] =

∂

∂θ
E[R]

∂θ

∂wj
= ∆θ

(
∂

∂wj
log

g(~w · ~x)

1− g(~w · ~x)

)
,

where

∂

∂wj
log

g(~w · ~x)

1− g(~w · ~x)
=

(
g′

g
+

g′

1− g

)
xj =

g′

g(1− g)
xj .

Putting everything together, we have

∆wj = R (Y − E[Y ])
g′

g(1− g)
xj

which is the same as ∆wj in Equation 2.

Exercise 4. Subtracting the mean

You have two stochastic variables, x and y with means E[x] and E[y]. Angles denote expectations.
We are interested in the product z = (x− b)(y − E[y]) with a fixed parameter b.

a. Show that E[z] is independent of the choice of the parameter b.

b. Show that E[z2] is minimal if b = E[xf(y)]
E[f(y)] , where f(y) = (y − E[y])2.

Hint : write E[z2] = F (b) and set dF
db = 0.

c. What is the optimal b, if x and f(y) are approximately independent?

d. Make the connection to policy gradient rules.

Hint : take x = r (reward) and y the action taken in state s. Compare with the policy gradient
formula of the simple 1-neuron actor. What can you conclude for the best value of b? Consider
different states s. Why should b depend on s?

Solution:

a.

E[z] = E[(x− b)(y − E[y])]

= E[xy]− E[x]E[y]− bE[y] + bE[y]

= E[xy]− E[x]E[y]

b.

F (b) = E
[
(x− b)2f(y)

]
⇒ 0 =

d

db
F (b) = −2E [(x− b)f(y)]

⇒ 0 = E[xf(y)]− bE[f(y)]

⇒ b =
E[xf(y)]

E[f(y)]



c. If x and f(y) are approximately independent, E[xf(y)] ≈ E[x]E[f(y)] and we find b ≈ E[x].

d. If we set r = x and introduce states s as a further stochastic variable, we see that y−E[y] appears
in the derivative of the log-policy (e.g. for a Gaussian policy ∂

∂w log
(
(1/
√

2π) exp(−(y − ws)2/2)
)

=

(y−ws)s with ws = E[y]; see also next exercise), and thus (r−b)(y−E[y]) ∝ (r−b) ∂
∂w log π(y|s;w) =

∂
∂wR(y, s). Since r and y are now state dependent, the optimal baseline should also be state-
dependent.

Exercise 5. Computer exercises: Environment 2 (part 1)1

Download the Jupyter notebook of the 2nd computer exercise and complete it until the end of Section
1.3.4 (Reinforce with Baseline).

1Start this exercise in the second exercise session of week 5.


