Artificial Neural Networks (Gerstner). Solutions for week 5

Policy gradient methods

Exercise 1. Single neuron as an actor ${ }^{1}$

Assume an agent with binary actions $Y \in\{0,1\}$. Action $y=1$ is taken with a probability $\pi(Y=1 \mid \vec{x} ; \vec{w})=g(\vec{w} \cdot \vec{x})$, where \vec{w} are a set of weights and \vec{x} is the input signal that contains the state information. The function g is monotonically increasing and limited by the bounds $0 \leq g \leq 1$.
For each action, the agent receives a reward $R(Y, \vec{x})$.
a. Calculate the gradient of the mean reward $\mathbb{E}[R]=\sum_{Y, \vec{x}} R(Y, \vec{x}) \pi(Y \mid \vec{x} ; \vec{w}) P(\vec{x})$ with respect to the weight w_{j}.
Hint: Insert the policy $\pi(Y=1 \mid \vec{x} ; \vec{w})=g\left(\sum_{k} w_{k} x_{k}\right)$ and $\pi(Y=0 \mid \vec{x} ; \vec{w})=1-g\left(\sum_{k} w_{k} x_{k}\right)$. Then take the gradient.
b. The rule derived in (a) is a batch rule. Can you transform this into an 'online rule'?

Hint: Pay attention to the following question: what is the condition that we can simply 'drop the summation signs'?

Solution:

a. $\frac{\partial}{\partial w_{j}} \mathbb{E}[R]=\sum_{\vec{x}} P(\vec{x})[R(y=1, \vec{x})-R(y=0, \vec{x})] g^{\prime}(\vec{w} \cdot \vec{x}) x_{j}$
b. If the online statistics matches the true statistics of the data in the batch, then we can drop the sum-signs. However, here this is not the case because the two outcomes $y=1$ and $y=0$ do not have equal probabilities. Therefore, the weight-factors in y need to be added. This can be done by the log-likelihood trick explained in class.

Exercise 2. Policy gradient for binary actions

a. Find an online policy gradient rule for the weights \vec{w} for the same setup as in Exercise 1 by calculating the gradient of the \log-likelihood $\log \pi(Y \mid \vec{x} ; \vec{w})$ with respect to the weights.
Hint: the policy π can be written as $\pi(Y \mid \vec{x} ; \vec{w})=(1-\rho)^{1-Y} \rho^{Y}$ with $\rho=g(\vec{w} \cdot \vec{x})$.
b. Rewrite your update rule for weight w_{j} in the form

$$
\Delta w_{j}=F(\vec{x}, \vec{w}, R)[Y-\mathbb{E}[Y]] x_{j}
$$

and give the expression for the function F.
Hint: Take your result from part a, use $\mathbb{E}[y]=g(\vec{w} \cdot \vec{x})$ and pull out a factor $\frac{1}{g(1-g)}$.

Solution:

[^0]a. Let's first calculate the derivative of $\log \pi(Y \mid \vec{x} ; \vec{w})$ with respect to w_{j}, using the hint:
\[

$$
\begin{aligned}
\frac{\partial}{\partial w_{j}} \log \pi(Y \mid \vec{x} ; \vec{w}) & =\frac{1}{\pi(Y \mid \vec{x} ; \vec{w})} \frac{\partial}{\partial w_{j}} \pi(Y \mid \vec{x} ; \vec{w}) \\
& =\frac{1}{(1-\rho)^{1-Y} \rho^{Y}} \frac{\partial}{\partial w_{j}}\left[(1-\rho)^{1-Y} \rho^{Y}\right] \\
& =\frac{1}{(1-\rho)^{1-Y} \rho^{Y}}\left[-(1-Y)(1-\rho)^{-Y} \rho^{Y}+Y(1-\rho)^{1-Y} \rho^{Y-1}\right] \frac{\partial}{\partial w_{j}} \rho \\
& =\left[-\frac{(1-Y)(1-\rho)^{-Y}}{(1-\rho)^{1-Y}}+\frac{Y \rho^{Y-1}}{\rho^{Y}}\right] g^{\prime}(\vec{w} \cdot \vec{x}) x_{j} \\
& =\left[-\frac{(1-Y)}{(1-\rho)}+\frac{Y}{\rho}\right] g^{\prime}(\vec{w} \cdot \vec{x}) x_{j} .
\end{aligned}
$$
\]

Now let's consider the term $\frac{\partial}{\partial w_{j}} \mathbb{E}[R]$ again. We can write

$$
\begin{aligned}
\frac{\partial}{\partial w_{j}} \mathbb{E}[R] & =\sum_{Y, \vec{x}} R(Y, \vec{x}) \frac{\partial}{\partial w_{j}} \pi(Y \mid \vec{x} ; \vec{w}) P(\vec{x}) \\
& =\sum_{Y, \vec{x}} R(Y, \vec{x}) \pi(Y \mid \vec{x} ; \vec{w}) \underbrace{\frac{1}{\pi(Y \mid \vec{x} ; \vec{w})} \frac{\partial}{\partial w_{j}} \pi(Y \mid \vec{x} ; \vec{w})}_{\frac{\partial}{\partial w_{j}} \log \pi(Y \mid \vec{x} ; \vec{w})} P(\vec{x}) \\
& =\mathbb{E}\left[R \frac{\partial}{\partial w_{j}}(\log \pi)\right],
\end{aligned}
$$

where we multiplied by $\pi(\cdot) / \pi(\cdot)=1$ and identified the derivative of the log. This suggest an online rule with an update term:

$$
\begin{equation*}
\Delta w_{j}=R \frac{\partial}{\partial w_{j}} \log \pi(Y \mid \vec{x} ; \vec{w})=R\left[\frac{Y}{\rho}-\frac{(1-Y)}{(1-\rho)}\right] g^{\prime}(\vec{w} \cdot \vec{x}) x_{j} \tag{1}
\end{equation*}
$$

b. Equation 1 can be simplified as

$$
\begin{equation*}
\Delta w_{j}=R\left[\frac{Y-\rho}{\rho(1-\rho)}\right] g^{\prime}(\vec{w} \cdot \vec{x}) x_{j}=\frac{R g^{\prime}}{g(1-g)}[Y-\mathbb{E}[Y]] x_{j} \tag{2}
\end{equation*}
$$

which has the form of $\Delta w_{j}=F(\vec{x}, \vec{w}, R)[Y-\mathbb{E}[Y]] x_{j}$ with

$$
F(\vec{x}, \vec{w}, R)=\frac{R g^{\prime}(\vec{w} \cdot \vec{x})}{g(\vec{w} \cdot \vec{x})(1-g(\vec{w} \cdot \vec{x}))}
$$

Exercise 3. Policy gradient

a. Other parameterizations of Exercise 2: Consider your solution to Exercise 2. What happens to the policy gradient rule if the likelihood ρ of action 1 is parameterized not by the weights \vec{w} but by other parameters: $\rho=\rho(\theta)$? Derive a learning rule for θ.
b. Generalization to the natural exponential family: The natural exponential family is a family of probability distributions that is widely used in statistics because of its favorable properties. These distributions can be written in the form

$$
p(Y)=h(Y) \exp (\theta Y-A(\theta))
$$

This family includes many of the standard probability distributions. The Bernoulli, the Poisson and the Gaussian distribution are all member of this family. A nice property of these distributions is that the mean can easily be calculated from the function $A(\theta)$:

$$
\mathbb{E}[Y]=A^{\prime}(\theta):=\frac{d A}{d \theta}(\theta)
$$

Assume that the policy $\pi(Y \mid \vec{x} ; \theta)$ is an element of the natural exponential family. Show that the online rule for the policy gradient has the shape:

$$
\Delta \theta=R(Y-\mathbb{E}[Y])
$$

Can you give an intuitive interpretation of this learning rule?
c. The Bernoulli distribution: Apply your result from (b) to the case of Exercise 2.

Solution:

a. Other parameterizations: Replacing $\vec{w} \cdot \vec{x}$ by θ, we can follow the same steps as in Exercise 2. The only difference comes in the expression of $\frac{d \rho}{d \theta}$, for which we don't have an explicit expression anymore. The learning rule is:

$$
\begin{equation*}
\Delta \theta=R\left[\frac{Y}{\rho}-\frac{(1-Y)}{(1-\rho)}\right] \rho^{\prime}(\theta) \tag{3}
\end{equation*}
$$

b. Generalization to the natural exponential family: Let's calculate $\frac{\partial}{\partial \theta} \log p(Y)$:

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log p(Y) & =\frac{\partial}{\partial \theta} \log [h(Y) \exp (\theta Y-A(\theta))] \\
& =\frac{1}{h(Y) \exp (\theta Y-A(\theta))} \cdot h(Y) \exp (\theta Y-A(\theta)) \cdot\left(Y-A^{\prime}(\theta)\right) \\
& =Y-A^{\prime}(\theta)=(Y-\mathbb{E}[Y])
\end{aligned}
$$

Therefore:

$$
\Delta \theta=R \frac{\partial}{\partial \theta} \log P(y)=R(Y-\mathbb{E}[Y])
$$

This learning rule will look for correlation between the reward and the deviations of Y from its expectation value. If R is systematically positive when Y is higher than its expectation value, θ will increase, leading to higher probabilities of higher Y. Inversely, if R is systematically negative when Y is higher than its expectation value, theta will decrease and the probability of lower Y will decrease.
c. For the Bernoulli distribution with $Y \in\{0,1\}$ and $p(Y=1)=\rho$, we have

$$
\begin{aligned}
p(Y) & =\rho^{Y}(1-\rho)^{1-Y}=\exp \left(Y \log \frac{\rho}{1-\rho}-\log \frac{1}{1-\rho}\right) \\
& =h(Y) \exp (\theta Y-A(\theta))
\end{aligned}
$$

where

$$
\begin{aligned}
h(Y) & =1 \\
\theta & =\log \frac{\rho}{1-\rho} \Leftrightarrow \rho=\frac{1}{1+e^{-\theta}} \\
A(\theta) & =\log \frac{1}{1-\rho}=\log \left(1+e^{\theta}\right)
\end{aligned}
$$

From part (b), we know that $\Delta \theta=R(Y-\mathbb{E}[Y])$. To apply apply this update rule to the case of Exercise 2, we first use the fact that $\rho=g(\vec{w} \cdot \vec{x})$ and write

$$
\theta=\log \frac{\rho}{1-\rho}=\log \frac{g(\vec{w} \cdot \vec{x})}{1-g(\vec{w} \cdot \vec{x})} .
$$

We can use this and write

$$
\Delta w_{j}=\frac{\partial}{\partial w_{j}} \mathbb{E}[R]=\frac{\partial}{\partial \theta} \mathbb{E}[R] \frac{\partial \theta}{\partial w_{j}}=\Delta \theta\left(\frac{\partial}{\partial w_{j}} \log \frac{g(\vec{w} \cdot \vec{x})}{1-g(\vec{w} \cdot \vec{x})}\right),
$$

where

$$
\frac{\partial}{\partial w_{j}} \log \frac{g(\vec{w} \cdot \vec{x})}{1-g(\vec{w} \cdot \vec{x})}=\left(\frac{g^{\prime}}{g}+\frac{g^{\prime}}{1-g}\right) x_{j}=\frac{g^{\prime}}{g(1-g)} x_{j} .
$$

Putting everything together, we have

$$
\Delta w_{j}=R(Y-\mathbb{E}[Y]) \frac{g^{\prime}}{g(1-g)} x_{j}
$$

which is the same as Δw_{j} in Equation 2.

Exercise 4. Subtracting the mean

You have two stochastic variables, x and y with means $\mathbb{E}[x]$ and $\mathbb{E}[y]$. Angles denote expectations. We are interested in the product $z=(x-b)(y-\mathbb{E}[y])$ with a fixed parameter b.
a. Show that $\mathbb{E}[z]$ is independent of the choice of the parameter b.
b. Show that $\mathbb{E}\left[z^{2}\right]$ is minimal if $b=\frac{\mathbb{E}[x f(y)]}{\mathbb{E}[f(y)]}$, where $f(y)=(y-\mathbb{E}[y])^{2}$.

Hint: write $\mathbb{E}\left[z^{2}\right]=F(b)$ and set $\frac{d F}{d b}=0$.
c. What is the optimal b, if x and $f(y)$ are approximately independent?
d. Make the connection to policy gradient rules.

Hint: take $x=r$ (reward) and y the action taken in state s. Compare with the policy gradient formula of the simple 1-neuron actor. What can you conclude for the best value of b ? Consider different states s. Why should b depend on s ?

Solution:

a.

$$
\begin{aligned}
\mathbb{E}[z] & =\mathbb{E}[(x-b)(y-\mathbb{E}[y])] \\
& =\mathbb{E}[x y]-\mathbb{E}[x] \mathbb{E}[y]-b \mathbb{E}[y]+b \mathbb{E}[y] \\
& =\mathbb{E}[x y]-\mathbb{E}[x] \mathbb{E}[y]
\end{aligned}
$$

b.

$$
\begin{aligned}
F(b) & =\mathbb{E}\left[(x-b)^{2} f(y)\right] \\
\Rightarrow 0=\frac{d}{d b} F(b) & =-2 \mathbb{E}[(x-b) f(y)] \\
\Rightarrow 0 & =\mathbb{E}[x f(y)]-b \mathbb{E}[f(y)] \\
\Rightarrow b & =\frac{\mathbb{E}[x f(y)]}{\mathbb{E}[f(y)]}
\end{aligned}
$$

c. If x and $f(y)$ are approximately independent, $\mathbb{E}[x f(y)] \approx \mathbb{E}[x] \mathbb{E}[f(y)]$ and we find $b \approx \mathbb{E}[x]$.
d. If we set $r=x$ and introduce states s as a further stochastic variable, we see that $y-\mathbb{E}[y]$ appears in the derivative of the log-policy (e.g. for a Gaussian policy $\frac{\partial}{\partial w} \log \left((1 / \sqrt{2 \pi}) \exp \left(-(y-w s)^{2} / 2\right)\right)=$ $(y-w s) s$ with $w s=\mathbb{E}[y] ;$ see also next exercise $)$, and thus $(r-b)(y-\mathbb{E}[y]) \propto(r-b) \frac{\partial}{\partial w} \log \pi(y \mid s ; w)=$ $\frac{\partial}{\partial w} R(y, s)$. Since r and y are now state dependent, the optimal baseline should also be statedependent.

Exercise 5. Computer exercises: Environment 2 (part 1) ${ }^{1}$

Download the Jupyter notebook of the 2nd computer exercise and complete it until the end of Section 1.3.4 (Reinforce with Baseline).

[^1]
[^0]: ${ }^{1}$ Will be started in class.

[^1]: ${ }^{1}$ Start this exercise in the second exercise session of week 5 .

