Markov Chains and Algorithmic Applications - IC - EPFL

Homework 1

Exercise 1. Let $(S_n, n \in \mathbb{N})$ be the simple asymmetric random walk on \mathbb{Z} , defined as

$$S_0 = 0$$
, $S_n = \xi_1 + \ldots + \xi_n$, $n \ge 1$,

where the random variables $(\xi_n, n \ge 1)$ are i.i.d. with $\mathbb{P}(\xi_n = +1) = p \in]0, 1[$ and $\mathbb{P}(\xi_n = -1) = q = 1 - p$. Using Stirling's formula (valid for large values of n):

$$n! \sim \sqrt{2\pi n} \, \left(\frac{n}{\mathrm{e}}\right)^n$$

show that

$$p_{0,0}^{(2n)} = \mathbb{P}(S_{2n} = 0 \mid S_0 = 0) \sim \frac{(4pq)^n}{\sqrt{\pi n}}.$$

NB: The notation $a_n \sim b_n$ means precisely

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1.$$

Exercise 2. Let $(\overrightarrow{S_n}, n \in \mathbb{N})$ be the simple symmetric random walk in two dimensions, that is,

$$\overrightarrow{S_0} = (0,0), \quad \overrightarrow{S_n} = \overrightarrow{\xi_1} + \ldots + \overrightarrow{\xi_n}, \quad n \ge 1,$$

where $(\overrightarrow{\xi_n}, n \ge 1)$ are i.i.d random variables such that

$$\mathbb{P}\left(\overrightarrow{\xi_n}=(+1,0)\right)=\mathbb{P}\left(\overrightarrow{\xi_n}=(-1,0)\right)=\mathbb{P}\left(\overrightarrow{\xi_n}=(0,+1)\right)=\mathbb{P}\left(\overrightarrow{\xi_n}=(0,-1)\right)=\frac{1}{4}.$$

Let us write $\overrightarrow{S_n} = (X_n, Y_n)$.

- a) Compute the transition matrices of the random walks $(X_n, n \in \mathbb{N})$ and $(Y_n, n \in \mathbb{N})$.
- b) Are these two random walks independent?

Define now $U_n = X_n + Y_n$ and $V_n = X_n - Y_n$, $n \in \mathbb{N}$. Again the same questions:

- **c)** Again, compute the transition matrices of the random walks $(U_n, n \in \mathbb{N})$ and $(V_n, n \in \mathbb{N})$.
- d) Are these two random walks independent?
- e) Deduce from this the value of $\mathbb{P}\left(\overrightarrow{S_{2n}}=(0,0)\mid \overrightarrow{S_0}=(0,0)\right)$. How does it behave for large n?

Exercise 3. Prove that the intercommunicating states of a Markov chain have the same period.

Hint 1: Consider two intercommunicating states, i and j. Then, find a lower bound for $p_{ii}^{(m+n+r)}$ as a function of $p_{ij}^{(m)}$, $p_{ji}^{(n)}$, and $p_{jj}^{(r)}$.

Hint 2: Show that $p_{jj}^{(r)}$ can be non-zero only if d(i)|r. Then, find an argument to conclude that d(i) = d(j).

Note: d|r is the notation for "d divides r".