
Foundations of Data Science Ecole Polytechnique Fédérale, Lausanne: Fall 2022
Urbanke September 30, 2022

Problem Set 2 —Due Friday, October 14, before class starts
For the Exercise Sessions on September 30 and Oct 7

Last name First name SCIPER Nr Points

Problem 1: Entropy and pairwise independence

Suppose X , Y , Z are pairwise independent fair flips, i.e., I(X;Y ) = I(Y ;Z) = I(Z;X) = 0 .

(a) What is H(X,Y ) ?

(b) Give a lower bound to the value of H(X,Y, Z) .

(c) Give an example that achieves this bound.

Problem 2: Divergence and L1

Suppose p and q are two probability mass functions on a finite set U . (I.e., for all u ∈ U , p(u) ≥ 0
and

∑
u∈U p(u) = 1 ; similarly for q .)

(a) Show that the L1 distance ‖p− q‖1 :=
∑
u∈U |p(u)− q(u)| between p and q satisfies

‖p− q‖1 = 2 max
S:S⊂U

p(S)− q(S)

with p(S) =
∑
u∈S p(u) (and similarly for q ), and the maximum is taken over all subsets S of U .

For α and β in [0, 1] , define the function d2(α‖β) := α log α
β + (1− α) log 1−α

1−β . Note that d2(α‖β) is

the divergence of the distribution (α, 1− α) from the distribution (β, 1− β) .

(b) Show that the first and second derivatives of d2 with respect to its first argument α satisfy
d′2(β‖β) = 0 and d′′2(α‖β) = log e

α(1−α) ≥ 4 log e .

(c) By Taylor’s theorem conclude that

d2(α‖β) ≥ 2(log e)(α− β)2.

(d) Show that for any S ⊂ U
D(p‖q) ≥ d2(p(S)‖q(S))

[Hint: use the data processing theorem for divergence.]

(e) Combine (a), (c) and (d) to conclude that

D(p‖q) ≥ log e
2 ‖p− q‖

2
1.
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(f) Show, by example, that D(p‖q) can be +∞ even when ‖p − q‖1 is arbitrarily small. [Hint:
considering U = {0, 1} is sufficient.] Consequently, there is no generally valid inequality that upper
bounds D(p‖q) in terms of ‖p− q‖1 .

Problem 3: Generating fair coin flips from rolling the dice

Suppose X1, X2, . . . are the outcomes of rolling a possibly loaded die multiple times. The outcomes
are assumed to be iid. Let P(Xi = m) = pm , for m = 1, 2, . . . , 6, with pm unknown (but non-negative
and summing to one, clearly). By processing this sequence we would like to obtain a sequence Z1, Z2, . . .
of fair coin flips.

Consider the following method: We process the X sequence in successive pairs, (X1X2) , (X3X4) ,
(X5X6) , mapping (3, 4) to 0 , (4, 3) to 1 , and all the other outcomes to the empty string λ . After
processing X1, X2 , we will obtain either nothing, or a bit Z1 .

(a) Show that, if a bit is obtained, it is fair, i.e., P(Z1 = 0|Z1 6= λ) = P(Z1 = 1|Z1 6= λ) = 1/2 .

In general we can process the X sequence in successive n -tuples via a function f : {1, 2, 3, 4, 5, 6}n →
{0, 1}∗ where {0, 1}∗ denotes the set of all finite length binary sequences (including the empty string
λ ). [The case in (a) is the function where f(3, 4) = 0 , f(4, 3) = 1, and f(j,m) = λ for all other
choices of j and m .] The function f is chosen such that (Z1, . . . , ZK) = f(X1, . . . , Xn) are i.i.d.,
and fair (here K may depend on (X1, . . . , Xn) ).

(b) Letting H(X) denote the entropy of the (unknown) distribution (p1, p2, . . . , p6), prove the following
chain of (in)equalities.

nH(X) = H(X1, . . . , Xn)

≥ H(Z1, . . . , ZK ,K)

= H(K) +H(Z1 . . . , ZK |K)

= H(K) + E[K]

≥ E[K].

Consequently, on the average no more than nH(X) fair bits can be obtained from (X1, . . . , Xn) .

(c) Describe how you would find a good f (with high E[K] ) for n = 4 which would work for any
distribution (p1, p2, ..., p6) .
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Advanced Problems

Problem 4: Extremal characterization for Rényi entropy

Given s ≥ 0 , and a random variable U taking values in U , with probabilitis p(u) , consider the distri-
bution ps(u) = p(u)s/Z(s) with Z(s) =

∑
u p(u)s .

(a) Show that for any distribution q on U ,

(1− s)H(q)− sD(q‖p) = −D(q‖ps) + logZ(s).

(b) Given s and p , conclude that the left hand side above is maximized by the choice by q = ps with
the value logZ(s) ,

The quantity

Hs(p) :=
1

1− s
logZ(s) =

1

1− s
log

∑
u

p(u)s

is known as the Rényi entropy of order s of the random variable U . When convenient, we will also write
Hs(U) instead of Hs(p) .

(c) Show that if U and V are independent random variables

Hs(UV ) := Hs(U) +Hs(V ).

[Here UV denotes the pair formed by the two random variables — not their product. E.g., if
U = {0, 1} and V = {a, b} , UV takes values in {0a, 0b, 1a, 1b} .]

Problem 5: KL and its Fenchel-Legendre dual

Consider the Kullback-Leibler divergence D(Q||P ) as a function of Q, for fixed P.

(a) Show that its convex conjugate (sometimes also called Fenchel-Legendre dual) is the logarithm of the
moment-generating function of P. Hint: To keep arguments simple, assume that P is a finite-dimensional
probability mass function, thus P ∈ Rn, and that P (x) > 0 for all x. Recall that the convex conjugate
is the function f∗(Q∗) = supQ〈Q∗, Q〉 −D(Q||P ), where Q∗ ∈ Rn.

(b) Fix P to be a normal distribution of mean zero. Let Q be arbitrary but with the same second
moment as P. Show that in this case, D(Q||P ) = h(P )− h(Q), that is, the difference of the differential
entropy of the normal distribution and the differential entropy of Q.

Problem 6: Moments and Rényi

Suppose G is an integer valued random variable taking values in the set {1, . . . ,K} . Let pi = Pr(G = i) .
We will derive bounds on the moments of G , the ρ -th moment of G being E[Gρ] .

1. Show that for any distribution q on {1, . . . ,K} , and any ρ

E[Gρ] =
∑
i

qi exp
[
log

pii
ρ

qi

]
.

(Here and below exp and log are taken to same base.)

2. Show that
E[Gρ] ≥ exp

[
−D(q‖p) + ρ

∑
i

qi log i
]
.

[Hint: use Jensen’s inequality on Part 1.]
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3. Show that ∑
i

qi log i = H(q)−
∑
i

qi log
1

iqi
≥ H(q)− log

K∑
i=1

1/i.

[Hint: use Jensen’s inequality.]

4. Using Part 2, Part 3, and the fact that
∑K
i=1 1/i ≤ 1 + lnK , show that, for ρ ≥ 0 ,

E[Gρ] ≥ (1 + lnK)−ρ exp[ρH(q)−D(q‖p)]

5. Suppose that U1, . . . , Un are i.i.d., each with distribution p . Suppose we try to determine the value
of X = (U1, . . . , Un) by asking a sequence of questions, each of the type ‘Is X = x ?’ until we are
answered ‘yes’. Let Gn be the number of questions we ask.

Show that, for ρ ≥ 0 ,

lim inf
n

1

nρ
logE[Gρn] ≥ H1/(1+ρ)(p)

where Hs(p) = 1
1−s log

∑
u p(u)s is the Rényi entropy of the distribution p .

[Hint: recall from Homework 2 Problem 6 that ρH1/(1+ρ)(p) = maxq ρH(q)−D(q‖p) , and that the
Rényi entropy of a collection of independent random variables is the sum of their Rényi entropies.]

Problem 7: Other Divergences

Suppose f is a convex function defined on (0,∞) with f(1) = 0 . Define the f -divergence of a distri-
bution p from a distribution q as

Df (p‖q) :=
∑
u

q(u)f(p(u)/q(u)).

In the sum above we take f(0) := limt→0 f(t) , 0f(0/0) := 0 , and 0f(a/0) := limt→0 tf(a/t) =
a limt→0 tf(1/t) .

(a) Show that for any non-negative a1 , a2 , b1 , b2 and with A = a1 + a2 , B = b1 + b2 ,

b1f(a1/b1) + b2f(a2/b2) ≥ Bf(A/B);

and that in general, for any non-negative a1, . . . , ak , b1, . . . , bk , and A =
∑
i ai , B =

∑
i bi , we

have ∑
i

bif(ai/bi) ≥ Bf(A/B).

[Hint: since f is convex, for any λ ∈ [0, 1] and any x1, x2 > 0 λf(x1) + (1 − λ)f(x2) ≥ f(λx1 +
(1− λ)x2) ; consider λ = b1/B .]

(b) Show that Df (p‖q) ≥ 0 .

(c) Show that Df satisfies the data processing inequality: for any transition probability kernel W (v|u)
from U to V , and any two distributions p and q on U

Df (p‖q) ≥ Df (p̃‖q̃)

where p̃ and q̃ are probability distributions on V defined via p̃(v) :=
∑
uW (v|u)p(u) , and q̃(v) :=∑

uW (v|u)q(u) ,

(d) Show that each of the following are f -divergences.

i. D(p‖q) :=
∑
u p(u) log(p(u)/q(u)) . [Warning: log is not the right choice for f .]

ii. R(p‖q) := D(q‖p) .

iii. 1−
∑
u

√
p(u)q(u)

iv. ‖p− q‖1 .

v.
∑
u(p(u)− q(u))2/q(u)
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