Problem Set 2 -Due Friday, October 14, before class starts
For the Exercise Sessions on September 30 and Oct 7

Last name	First name	SCIPER Nr	Points

Problem 1: Entropy and pairwise independence

Suppose X, Y, Z are pairwise independent fair flips, i.e., $I(X ; Y)=I(Y ; Z)=I(Z ; X)=0$.
(a) What is $H(X, Y)$?
(b) Give a lower bound to the value of $H(X, Y, Z)$.
(c) Give an example that achieves this bound.

Problem 2: Divergence and L_{1}

Suppose p and q are two probability mass functions on a finite set \mathcal{U}. (I.e., for all $u \in \mathcal{U}, p(u) \geq 0$ and $\sum_{u \in \mathcal{U}} p(u)=1$; similarly for q.)
(a) Show that the L_{1} distance $\|p-q\|_{1}:=\sum_{u \in \mathcal{U}}|p(u)-q(u)|$ between p and q satisfies

$$
\|p-q\|_{1}=2 \max _{\mathcal{S}: \mathcal{S} \subset \mathcal{U}} p(\mathcal{S})-q(\mathcal{S})
$$

with $p(\mathcal{S})=\sum_{u \in \mathcal{S}} p(u)$ (and similarly for q), and the maximum is taken over all subsets \mathcal{S} of \mathcal{U}.

For α and β in $[0,1]$, define the function $d_{2}(\alpha \| \beta):=\alpha \log \frac{\alpha}{\beta}+(1-\alpha) \log \frac{1-\alpha}{1-\beta}$. Note that $d_{2}(\alpha \| \beta)$ is the divergence of the distribution $(\alpha, 1-\alpha)$ from the distribution $(\beta, 1-\beta)$.
(b) Show that the first and second derivatives of d_{2} with respect to its first argument α satisfy $d_{2}^{\prime}(\beta \| \beta)=0$ and $d_{2}^{\prime \prime}(\alpha \| \beta)=\frac{\log e}{\alpha(1-\alpha)} \geq 4 \log e$.
(c) By Taylor's theorem conclude that

$$
d_{2}(\alpha \| \beta) \geq 2(\log e)(\alpha-\beta)^{2} .
$$

(d) Show that for any $\mathcal{S} \subset \mathcal{U}$

$$
D(p \| q) \geq d_{2}(p(\mathcal{S}) \| q(\mathcal{S}))
$$

[Hint: use the data processing theorem for divergence.]
(e) Combine (a), (c) and (d) to conclude that

$$
D(p \| q) \geq \frac{\log e}{2}\|p-q\|_{1}^{2}
$$

(f) Show, by example, that $D(p \| q)$ can be $+\infty$ even when $\|p-q\|_{1}$ is arbitrarily small. [Hint: considering $\mathcal{U}=\{0,1\}$ is sufficient.] Consequently, there is no generally valid inequality that upper bounds $D(p \| q)$ in terms of $\|p-q\|_{1}$.

Problem 3: Generating fair coin flips from rolling the dice

Suppose X_{1}, X_{2}, \ldots are the outcomes of rolling a possibly loaded die multiple times. The outcomes are assumed to be iid. Let $\mathbb{P}\left(X_{i}=m\right)=p_{m}$, for $m=1,2, \ldots, 6$, with p_{m} unknown (but non-negative and summing to one, clearly). By processing this sequence we would like to obtain a sequence Z_{1}, Z_{2}, \ldots of fair coin flips.

Consider the following method: We process the X sequence in successive pairs, $\left(X_{1} X_{2}\right),\left(X_{3} X_{4}\right)$, $\left(X_{5} X_{6}\right)$, mapping $(3,4)$ to $0,(4,3)$ to 1 , and all the other outcomes to the empty string λ. After processing X_{1}, X_{2}, we will obtain either nothing, or a bit Z_{1}.
(a) Show that, if a bit is obtained, it is fair, i.e., $\mathbb{P}\left(Z_{1}=0 \mid Z_{1} \neq \lambda\right)=\mathbb{P}\left(Z_{1}=1 \mid Z_{1} \neq \lambda\right)=1 / 2$.

In general we can process the X sequence in successive n-tuples via a function $f:\{1,2,3,4,5,6\}^{n} \rightarrow$ $\{0,1\}^{*}$ where $\{0,1\}^{*}$ denotes the set of all finite length binary sequences (including the empty string λ). [The case in (a) is the function where $f(3,4)=0, f(4,3)=1$, and $f(j, m)=\lambda$ for all other choices of j and m.] The function f is chosen such that $\left(Z_{1}, \ldots, Z_{K}\right)=f\left(X_{1}, \ldots, X_{n}\right)$ are i.i.d., and fair (here K may depend on $\left(X_{1}, \ldots, X_{n}\right)$).
(b) Letting $H(X)$ denote the entropy of the (unknown) distribution $\left(p_{1}, p_{2}, \ldots, p_{6}\right)$, prove the following chain of (in)equalities.

$$
\begin{aligned}
n H(X) & =H\left(X_{1}, \ldots, X_{n}\right) \\
& \geq H\left(Z_{1}, \ldots, Z_{K}, K\right) \\
& =H(K)+H\left(Z_{1} \ldots, Z_{K} \mid K\right) \\
& =H(K)+\mathbb{E}[K] \\
& \geq \mathbb{E}[K] .
\end{aligned}
$$

Consequently, on the average no more than $n H(X)$ fair bits can be obtained from $\left(X_{1}, \ldots, X_{n}\right)$.
(c) Describe how you would find a good f (with high $\mathbb{E}[K]$) for $n=4$ which would work for any distribution $\left(p_{1}, p_{2}, \ldots, p_{6}\right)$.

Advanced Problems

Problem 4: Extremal characterization for Rényi entropy

Given $s \geq 0$, and a random variable U taking values in \mathcal{U}, with probabilitis $p(u)$, consider the distribution $p_{s}(u)=p(u)^{s} / Z(s)$ with $Z(s)=\sum_{u} p(u)^{s}$.
(a) Show that for any distribution q on \mathcal{U},

$$
(1-s) H(q)-s D(q \| p)=-D\left(q \| p_{s}\right)+\log Z(s) .
$$

(b) Given s and p, conclude that the left hand side above is maximized by the choice by $q=p_{s}$ with the value $\log Z(s)$,

The quantity

$$
H_{s}(p):=\frac{1}{1-s} \log Z(s)=\frac{1}{1-s} \log \sum_{u} p(u)^{s}
$$

is known as the Rényi entropy of order s of the random variable U. When convenient, we will also write $H_{s}(U)$ instead of $H_{s}(p)$.
(c) Show that if U and V are independent random variables

$$
H_{s}(U V):=H_{s}(U)+H_{s}(V)
$$

[Here $U V$ denotes the pair formed by the two random variables - not their product. E.g., if $\mathcal{U}=\{0,1\}$ and $\mathcal{V}=\{a, b\}, U V$ takes values in $\{0 a, 0 b, 1 a, 1 b\}$.

Problem 5: KL and its Fenchel-Legendre dual

Consider the Kullback-Leibler divergence $D(Q \| P)$ as a function of Q, for fixed P.
(a) Show that its convex conjugate (sometimes also called Fenchel-Legendre dual) is the logarithm of the moment-generating function of P. Hint: To keep arguments simple, assume that P is a finite-dimensional probability mass function, thus $P \in \mathbb{R}^{n}$, and that $P(x)>0$ for all x. Recall that the convex conjugate is the function $f^{*}\left(Q^{*}\right)=\sup _{Q}\left\langle Q^{*}, Q\right\rangle-D(Q \| P)$, where $Q^{*} \in \mathbb{R}^{n}$.
(b) Fix P to be a normal distribution of mean zero. Let Q be arbitrary but with the same second moment as P. Show that in this case, $D(Q \| P)=h(P)-h(Q)$, that is, the difference of the differential entropy of the normal distribution and the differential entropy of Q.

Problem 6: Moments and Rényi

Suppose G is an integer valued random variable taking values in the set $\{1, \ldots, K\}$. Let $p_{i}=\operatorname{Pr}(G=i)$. We will derive bounds on the moments of G, the ρ-th moment of G being $\mathbb{E}\left[G^{\rho}\right]$.

1. Show that for any distribution q on $\{1, \ldots, K\}$, and any ρ

$$
\mathbb{E}\left[G^{\rho}\right]=\sum_{i} q_{i} \exp \left[\log \frac{p_{i} i^{\rho}}{q_{i}}\right]
$$

(Here and below exp and log are taken to same base.)
2. Show that

$$
\mathbb{E}\left[G^{\rho}\right] \geq \exp \left[-D(q \| p)+\rho \sum_{i} q_{i} \log i\right]
$$

[Hint: use Jensen's inequality on Part 1.]
3. Show that

$$
\sum_{i} q_{i} \log i=H(q)-\sum_{i} q_{i} \log \frac{1}{i q_{i}} \geq H(q)-\log \sum_{i=1}^{K} 1 / i
$$

[Hint: use Jensen's inequality.]
4. Using Part 2, Part 3, and the fact that $\sum_{i=1}^{K} 1 / i \leq 1+\ln K$, show that, for $\rho \geq 0$,

$$
\mathbb{E}\left[G^{\rho}\right] \geq(1+\ln K)^{-\rho} \exp [\rho H(q)-D(q \| p)]
$$

5. Suppose that U_{1}, \ldots, U_{n} are i.i.d., each with distribution p. Suppose we try to determine the value of $X=\left(U_{1}, \ldots, U_{n}\right)$ by asking a sequence of questions, each of the type 'Is $X=x$?' until we are answered 'yes'. Let G_{n} be the number of questions we ask.
Show that, for $\rho \geq 0$,

$$
\liminf _{n} \frac{1}{n \rho} \log \mathbb{E}\left[G_{n}^{\rho}\right] \geq H_{1 /(1+\rho)}(p)
$$

where $H_{s}(p)=\frac{1}{1-s} \log \sum_{u} p(u)^{s}$ is the Rényi entropy of the distribution p.
[Hint: recall from Homework 2 Problem 6 that $\rho H_{1 /(1+\rho)}(p)=\max _{q} \rho H(q)-D(q \| p)$, and that the Rényi entropy of a collection of independent random variables is the sum of their Rényi entropies.]

Problem 7: Other Divergences

Suppose f is a convex function defined on $(0, \infty)$ with $f(1)=0$. Define the f-divergence of a distribution p from a distribution q as

$$
D_{f}(p \| q):=\sum_{u} q(u) f(p(u) / q(u))
$$

In the sum above we take $f(0):=\lim _{t \rightarrow 0} f(t), 0 f(0 / 0):=0$, and $0 f(a / 0):=\lim _{t \rightarrow 0} t f(a / t)=$ $a \lim _{t \rightarrow 0} t f(1 / t)$.
(a) Show that for any non-negative $a_{1}, a_{2}, b_{1}, b_{2}$ and with $A=a_{1}+a_{2}, B=b_{1}+b_{2}$,

$$
b_{1} f\left(a_{1} / b_{1}\right)+b_{2} f\left(a_{2} / b_{2}\right) \geq B f(A / B) ;
$$

and that in general, for any non-negative $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$, and $A=\sum_{i} a_{i}, B=\sum_{i} b_{i}$, we have

$$
\sum_{i} b_{i} f\left(a_{i} / b_{i}\right) \geq B f(A / B) .
$$

[Hint: since f is convex, for any $\lambda \in[0,1]$ and any $x_{1}, x_{2}>0 \quad \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geq f\left(\lambda x_{1}+\right.$ $\left.(1-\lambda) x_{2}\right)$; consider $\left.\lambda=b_{1} / B.\right]$
(b) Show that $D_{f}(p \| q) \geq 0$.
(c) Show that D_{f} satisfies the data processing inequality: for any transition probability kernel $W(v \mid u)$ from \mathcal{U} to \mathcal{V}, and any two distributions p and q on \mathcal{U}

$$
D_{f}(p \| q) \geq D_{f}(\tilde{p} \| \tilde{q})
$$

where \tilde{p} and \tilde{q} are probability distributions on \mathcal{V} defined via $\tilde{p}(v):=\sum_{u} W(v \mid u) p(u)$, and $\tilde{q}(v):=$ $\sum_{u} W(v \mid u) q(u)$,
(d) Show that each of the following are f-divergences.
i. $D(p \| q):=\sum_{u} p(u) \log (p(u) / q(u))$. [Warning: \log is not the right choice for f.]
ii. $R(p \| q):=D(q \| p)$.
iii. $1-\sum_{u} \sqrt{p(u) q(u)}$
iv. $\|p-q\|_{1}$.
v. $\sum_{u}(p(u)-q(u))^{2} / q(u)$

