Partition of Unity.

Exercise 3.1. Consider \mathbb{R} with its standard smooth structure. Let $f : \mathbb{R} \to \mathbb{R}$ the sign function:

$$x \mapsto \begin{cases} 1 \quad x > 0 \\ 0 \quad x = 0 \\ -1 \quad x < 0 \end{cases}$$

Let $A \subset \mathbb{R}$ a closed subset such that $f|_A$ is smooth in the sense defined in the Lecture. Find a smooth extension of $f|_A$ to all of \mathbb{R} what existence is guaranteed by the Extension Lemma. Notice that $f|_{(-\infty,0)\cup(0,\infty)}$ is smooth but does not admit an extension to \mathbb{R} ; i.e. the conclusion of the extension Lemma fails if we remove the hypothesis A closed.

Exercise 3.2. A continuous map $f: X \to Y$ is called *proper* if $f^{-1}(K)$ is compact for every compact set $K \subseteq Y$. Show that for every smooth manifold M there exists a smooth map $f: M \to [0, +\infty)$ that is proper.

Hint: Note that f must be unbounded unless M is compact. Use a function of the form f = $\sum_{i \in \mathbb{N}} c_i f_i$, where $(f_i)_{i \in \mathbb{N}}$ is a partition of unity and the c_i 's are real numbers.

Exercise 3.3. Let M be a \mathcal{C}^k manifold and let U be an open neighborhood of the set $M \times \{0\}$ in the space $M \times [0, +\infty)$. Show that there exists a \mathcal{C}^k function $f: M \to (0, +\infty)$ whose graph is contained in U.

Tangent vectors and tangent space.

Exercise 3.4. (Derivations in \mathbb{R}^n)

- (a) Show that $D_{v|_a}: C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ defined by $\frac{d}{dt}|_{t=0}f(a+tv)$ is a derivation, i.e. is \mathbb{R} -linear and satisfy the product rule.
- (b) Let $F: U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$ be a smooth map. Prove that the linear map DF_p : $T_pU \rightarrow T_F(p)V$ is given, with respect to the standard basis $\langle \frac{\partial}{\partial x^i} |_p \rangle_{i=1,\dots,n}, \langle \frac{\partial}{\partial y^j} |_{F(p)} \rangle_{j=1,\dots,m}$, by the Jacobian matrix $\left(\frac{\partial F^j}{\partial x^i} \right)_{i,i}$.

Exercise 3.5. Let M be a differentiable n-manifold. Show that:

- (a) The differential of a smooth map $F: M \to N$ at a point $p \in M$ is a welldefined linear map $D_pF: T_pM \to T_pN$.
- (b) Chain rule: for smooth maps $F: M \to N, G: N \to P$ and a point $p \in M$,

$$D_p(G \circ F) = D_{F(p)}G \circ D_p F.$$

In particular, if F is a diffeomorphism, then D_pF has inverse $(D_pF)^{-1} =$ $D_{F(p)}(F^{-1}).$

(c) Change of coordinates:

Let $X \in T_p M$ be a tangent vector and let $\varphi, \, \widetilde{\varphi}$ be smooth charts of M defined at a p such that $\widetilde{\varphi} \circ \varphi^{-1}$: $\varphi(U \cup U) \to \widetilde{\varphi}(U \cup U)$ is defined by $(x^1,\ldots,x^n)\mapsto (z^1(x^1,\ldots,x^n),\ldots,z^n(x^1,\ldots,x^n))$. If $X\in T_pM$ we have that in the local coordinates charts

$$X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}} |_{p} = \sum_{i=1}^{n} Z^{i} \frac{\partial}{\partial z^{i}} |_{p}$$

where X^i respectively Z^i are called *components* of the tangent vector in the coordinate base. Prove that

$$Z^{i} = \sum_{j=1}^{n} X^{j} \frac{\partial z^{i}}{\partial x^{j}}(\varphi(p))$$

Exercise 3.6 (Velocity vectors of curves). Let M be a differentiable manifold. The velocity vector of a differentiable curve $\gamma : I \subseteq \mathbb{R} \to M$ at an instant $t \in I$ is the vector $\gamma'(t) := D_t \gamma(1|_t) \in T_{\gamma(t)} M$.

Show that for any tangent vector $X \in T_p M$ there exists a smooth curve $\gamma : (-\varepsilon, \varepsilon) \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = X$.

Exercise 3.7 (Spherical coordinates on \mathbb{R}^3). Consider the following map defined for $(r, \varphi, \theta) \in W := \mathbb{R}^+ \times (0, 2\pi) \times (0, \pi)$:

 $\Psi(r,\varphi,\theta) = (r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta) \in \mathbb{R}^3.$

Check that Ψ is a diffeomorphism¹ onto its image $\Psi(W) =: U$. We can therefore consider Ψ^{-1} as a smooth chart on \mathbb{R}^3 and it is common to call the component functions of Ψ^{-1} the **spherical coordinates** (r, φ, θ) .

Express the coordinate vectors of this chart

$$\left. \frac{\partial}{\partial r} \right|_p, \left. \frac{\partial}{\partial \varphi} \right|_p, \left. \frac{\partial}{\partial \theta} \right|_p$$

at some point $p \in U$ in terms of the standard coordinate vectors $\frac{\partial}{\partial x}\Big|_{p}, \frac{\partial}{\partial y}\Big|_{p}, \frac{\partial}{\partial z}\Big|_{p}$

Exercise 3.8. (To hand in) Consider the inclusion $\iota : S^2 \to \mathbb{R}^3$, where we endow both spaces with the standard smooth structure. Let $p \in S^2$. What is the image of $D_p\iota: T_pS^2 \to T_p\mathbb{R}^3$? (Identify $T_p\mathbb{R}^3$ with \mathbb{R}^3 in the standard way, i.e. $e_i \mapsto \frac{\partial}{\partial x^i}|_p$) So the result should be the equation for a plane in \mathbb{R}^3 .)

Hint: Use Exercise 7 on spherical coordinates.

¹Here "diffeomorphism" is meant in the standard sense of maps between open subsets of \mathbb{R}^3 .