Introduction to Differentiable Manifolds

EPFL — Fall 2022 F. Carocci, M. Cossarini
Exercise Series 1 - Topological and smooth manifolds 2022—-09-20

Convention: We understand a subset/product/quotient of topological space(s) to be auto-

matically endowed with the subspace/product/quotient topology unless we state otherwise.

Exercise 1.1. Which of the following spaces are locally Euclidean? Which are (glob-
ally) homeomorphic to some Euclidean space?

(a)

an open ball in R™

Br(0) = {x € R™ : ||z|| < R} is globally homeomorphic to R™. And

the homeomorphism ¢(z) = R maps R"™ into Bgr(0). Observe that
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the closed interval [0,1] C R

The interval [0, 1] is neither locally nor globally homeomorphic to R. Global
homeomorphism is excluded since [0, 1] is compact but R is not. A contin-
uous map will map a compact set to a compact set. Next, suppose, for a
contradiction, that [0, 1] is locally homeomorphic to R and denote by ¢ the
homeomorphism. Take one of the extrema (e.g. 0 or 1) of the interval and
consider an open neighborhood in the subspace topology: U = [0,¢) for ex-
ample. U is connected and open hence ¢(U) is connected and open as well.
Furthermore (0, ¢) is still open and connected but its image through ¢ is not
connected because we remove ¢(0).

the circle St ¢ R2

St is locally homeomorphic to R. In fact denote S = {(x,y) € R? :
22 4+ y? = 1}, and define the nord and south stereographic projections as

pe: ST\ {(0,£1)} — R
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It is not difficult to verify that for every point p € S! there exists an open
set U containing p, such that the image of U via one of the two stereographic
projections is an open set in R.

the zero set of the function f:R? — R, f(z,y) = 2y

The set E = {(z,y) € R? : y = 0} is not locally Euclidean because no
neighborhood U of the origin in E is homeomorphic to R. To prove this
last statement argue by contradiction: suppose that there exist an homeo-
morphism ¢ : U — R. Then U’ = U \ {(0,0)} has at least 4 connected
components while p(U’) has just 2 connected components. The contradiction
arises from the fact that a homeomorphism preserves connected components.

the “bent line” {(x,y) € R? | 2,y > 0,2y = 0}.

The set E{(z,y) € R% : 2y = 0} is globally homeomorphic to R via the
homeomorphism
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Exercise 1.2. If a space M is locally Euclidean of dimension n at some point p, show
that p has an open neighborhood that is homeomorphic to the whole space R", or to
a open ball B, (z).

Deduce the equivalent definitions of topological n-manifold.

We know that the there is an open neighborhood U of p and a homeomorpshism
¢ from U to an open subset ¢(U) of R”. Then we can find a ball B(¢(p),r) C
e(U) C R™ for some r > 0. Let us consider the map ¢ : B(¢(p),r) — R™ given

by ¥(z) = %. One can verify that ¢ is a homeomorphism with inverse

P (y) == o(p) + m Set U’ := o= Y(B(¢(p),r)) € M, which is a neighborhood of
pin M and the map 6 := 1o : U — R™. We showed that # is a homeomorphism
since ¢ and ¢ are both homeomorphisms.

Exercise 1.3. The line with two origins is the space M obtained as quotient of
the space X = {£1} x R by the equivalence relation (i,z) ~ (j,y) iff x =y # 0.

(a) Show that M is locally Euclidean and second countable, but not Hausdorff.

Denote 7 : X — M the quotient map (¢, ) — [(i, x)].

The two “origins” are the equivalence classes of the points (i,0) € X (for
i = %1); these classes have just one element each and we denote them 0; =
[(4,0)] = {(3,0)} € M. In contrast, the equivalence class of any other point
(i,z) € X with = # 0 is the two-point set = = [(i,z)] = {(1,x), (—1,z)} € M.
Therefore M is the set of equivalence classes

M =X/ ={01}U{0_} U{Z}sz0.
The space M is locally Euclidean of dimension 1 because it is the union

of two open sets R; = {[(i,z)] € M : x € R} (for i = £1), each of which is
homeomorphic to R via the map

R = R;:zw— [(i,2)].

To see that the sets R; are open in the quotient topology, note that 7~1(R;) =
X \ 0_;, which is open in X.

Moreover, M is second countable because it is the union of two second
countable open subsets, namely, the sets R;.

Finally M is not Hausdorff since every pair of open subsets containing 0_
and 04 respectively have non-empty intersection.

(b) Find a sequence of points in M that converges to two different points, and
show that this cannot happen in a Hausdorff space. Recall that given a
sequence {,},cy in X, z is a limit point if for each neighbourhood U, of x
there exist a N such that z,, € U, for each n > N.

Take as a sequence in M m((—1)", 1); 01 and 0_ are both limit point.

If Y is a Housdorff space if the limit exist is unique: suppose otherwise that
x,y are two limits of a given sequence {x,}, .n. Then for every neighbourhood
U, of z and Uy of y we have N, M such that z,, € U, for each n > N and
xy € Uy for each n > M, in particular z,, € U, UU, for each n > max(N, M).
This implies that any any neighbourhood of z and y intersect, contradicting
the Hausdorff hypothesis.

Exercise 1.4. Let N be an open subset of a topological n-manifold M.
(a) Show that N is a topological n-manifold.

First, we note that a subset of a Hausdorff (resp. second countable) space

is a Hausdorff (resp. secound countable) space. Indeed, let S be a subset
2
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of a topological space X, endowed with the subpspace topology. If X is X
is Hausdorff, to show that S is Hausdorff as well, take two distinct points
p,q € S. Let U,V be disjoint neighborhoods of p,q in X. Then the sets
U =U0UnS, V' =VnNS are disjoint open neighborhoods of p,q in S. If X
is second countable, let {U;};c; be a countable basis for the topology of X.
Then {U; N S}icr is a countable basis for S. Thus S is second-countable.

Now let M be a topological n-manifold, and let U C M be an open set,
endowed with the subspace topology.

By the results mentioned above, U is Hausdorff and secound countable.

Let us show that IV is locally Euclidean. For each point Vp € N, there
exists an open neighborhood U C M that is homeomorphic to an open set
V CR™ Let ¢ : U — V be a homeomorphism. Since NN is open in M, the
set U N N is open in U. Therefore (U N N) is open in V (and thus, in R"),
and the restricted map ¢ : U NN — (U N N) is a homeomorphism. This
shows that N is locally Euclidean.

Show that any smooth structure A on M determines a smooth structure B
on N, consisting of the charts (U, ¢) € A such that U C N.

We will use the following fact: For any chart (U, ) € A, the map ¢|y is
also a chart of A for any open set V C U.

Proof. Note that ¢|y : V — (V) is a homeomorphism from an open subset
of M to an open subset of ¢(U) C R", therefore |y is a topological chart of
M.

To show that ¢|y € A, since A is a maximal smooth atlas, it suffices to
show that the chart ¢|y is smooth compatible with all charts ¥ € A. And
indeed, it is compatible because the transition maps

olv o™ = (por ™ Nlyw)

—1 -1
Yo(plv) = @op e
are smooth since they are restrictions of transition maps of A. O

Now let’s go back to N. N is a topological n-manifold because it is an open
subset of M. Each element of B is a topological chart of IV, because it is an
homeomorphism ¢ : U — V', where U C N is an open subset of M (hence
of N) and V' is an open subset of R"”. These charts are smooth compatible
because they are taken from the smooth structure of M. The domains of the
charts of B cover N, because for each point p € N there is a chart ¢ € A of
M with domain U > p, and then the restriction p|ynny : UNN — (U N N)
is a chart in B that is defined at p. All this proves that B is a smooth atlas
for N.

(Here we used the fact that ¢ € A, then the chart ¢|y € A for any open set
V C Dom ¢. To see this, since A is maximal, it suffices to show that the chart
©|y is smooth compatible with all charts ¢ € A. And indeed, it is compatible
because the transition maps

olv o™t = (o Nlyw)

Po(ely)™h = @Wo e Nlenn
are smooth since they are restrictions of transition maps of A.)

Finally, let us prove that B is maximal as a smooth atlas. Let ¢ be a chart
of N that is smooth-compatible with all charts of B. We have to show that
1) belongs to B. It suffices to show that 1 is compatible with all charts of A,
because this implies by maximality of A that ¢ € A, and it follows that ¢) € B

since the domain of ¢ is contained in N. Thus we just have to show that 1 is
3
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compatible with every chart ¢ € A, i.e. that the transition maps @ o ~! and
o @~ ! are smooth. To see that these maps are smooth we rewrite them as

poypt =goy

pop l=yog!
where ¢ = ¢|NnDom ¢ is the restriction of ¢. The chart ¢ is a chart of B, since
it is a chart of A and its domain is contained in N. Therefore 1 is smooth
compatible with @, hence the transition maps are smooth.

Exercise 1.5. Show that the product of two topological manifolds is a topological
manifold. What is its dimension?

Let M, N be topological manifolds of respective dimensions m, n. Let us show
that the product M x N is a topological manifold of dimension m x n. The space
M x N is Hausdorff and second countable, since a product of Hausdorff (resp. second
countable) spaces is a Hausdorff (resp. second countable) space.

Let us show that M x N is locally Euclidean of dimension m + n. For every
(p,q) € M x N, we can find open neighborhoods U C M, V C N of p and ¢ that are
respectively homeomorphic to R™ and R™. It follows that the set U x V' (which is an
open neighborhood of (p, q) in the product topology) is homeomorphic to R™*",

Exercise 1.6. We have seen in the lecture that S is a topological n-manifold. Show
that the charts (UZ-+’_, @;L’_)izl,_._,n form a smooth atlas for S™.

We only need to verify that the transition functions are smooth. For ¢, j different
indices, we can assume i < j we can explicitly compute the transition functions to
be:

— _ ~. 1
goj’ ogoj’ (uh, .. u™) = (uly .l (1= |u)?)2, ).

A similar formula holds for ¢ > j and for i = j one can compute that gpjo(varphi; i

@; o (varphi)~! = Idgn.

Exercise 1.7 (To hand in). Show that the projective space P", defined as the
quotient of R\ {0} by the equivalence relation z ~ y iff v = Ay for some X € R\ {0},
is a smooth n-manifold with atlas A = {(Uj, i) }i=o,...n given by

Zo z; Tn
;= P" | x; ; =—, ., — e, —
U=l e P ln 20}, (i) = (2 22,
where [z] € P" denotes the equivalence class of a point z = (g, ..., x,) € R\ {0}.

Exercise 1.8. Show that the n-torus T™ = R"/Z", defined as the quotient of R™ by
the equivalence relation x ~ y iff y — x € Z", is a topological n-manifold.

Let 7 : R® — T" be the quotient map
x[z]={rx+z:2€Z"}.

Note that two points z,y of R™ are in the same equivalence class if and only if the
coordinates z;,y; coincide modulo 1 for each i. (In other words, the real numbers
x;,y; have the same integer part.)

(a) 7 is an open map. Indeed, let U C R™ be an open set. To see that 7(U)
is open in the quotient topology, we verify that its preimage 7—1(7(U)) =
U,ezn U + {#} is open, being a union of translate copies of U.

(b) T™ is second countable. Indeed, the image of any (countable) topological basis

by a surjective open map is a (countable) topological basis.
4
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(¢) To prove that T" is locally Euclidean, we show that:

The quotient map 7 is locally injective, i.e., each point x € X has an open
neighborhood U where the quotient map =« is injective. Indeed, let U be an
open neighborhood of x with diameter < 1. Then there are no two different
points x’,2” € U such that 2" — 2’ € Z". Therefore 7 is injective on U.
Furthermore, the set w(U) is open in T", and the restricted quotient map
m: U — 7(U) is a homeomorphism because it is bijective and open. This
proves that the T" is locally Euclidean of dimension n.

(d) T™ is Hausdorff. Take two different points 7(x),m(y) € T™. Then there is
some ¢ such that the coordinates x;,y; are different modulo 1. Let ¢ > 0
be the distance between the numbers x;,y; taken modulo 1, that is, ¢ =
min, ez y; — (z;+2). This number is the least we would have to move y; so that
it coincides with x; modulo 1. Then the Euclidean open balls U = B(z, §),
V = B(y, §) satisfy #(U) N 7(V) = () because for every pair of points in U
and V, their i-th coordinates do not coincide modulo 1. The sets 7(U), w(V)
are disjoint open neighborhoods of 7(z), 7(y), as needed to show that T™ is
Hausdorft.

Exercise 1.9. Show that (R,idg) and (R, : x — z3) define to different smooth
structures on the real line.

The charts ¢ and idg are not smoothly compatible since the transition map idg o¢™" :
y — y'/3 is not smooth. Therefore, the atlases A and B define different smooth struc-
tures.



