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Exercise Series 1 - Topological and smooth manifolds 2022–09–20

Convention: We understand a subset/product/quotient of topological space(s) to be auto-

matically endowed with the subspace/product/quotient topology unless we state otherwise.

Exercise 1.1. Which of the following spaces are locally Euclidean? Which are (glob-

ally) homeomorphic to some Euclidean space?

(a) an open ball in Rn

BR(0) = {x ∈ Rn : ‖x‖ < R} is globally homeomorphic to Rn. And

the homeomorphism ϕ(x) = R x
1+‖x‖ maps Rn into BR(0). Observe that

ϕ−1(x) = x
R−‖x‖ .

(b) the closed interval [0, 1] ⊂ R

The interval [0, 1] is neither locally nor globally homeomorphic to R. Global

homeomorphism is excluded since [0, 1] is compact but R is not. A contin-

uous map will map a compact set to a compact set. Next, suppose, for a

contradiction, that [0, 1] is locally homeomorphic to R and denote by ϕ the

homeomorphism. Take one of the extrema (e.g. 0 or 1) of the interval and

consider an open neighborhood in the subspace topology: U = [0, ε) for ex-

ample. U is connected and open hence ϕ(U) is connected and open as well.

Furthermore (0, ε) is still open and connected but its image through ϕ is not

connected because we remove ϕ(0).

(c) the circle S1 ⊂ R2

S1 is locally homeomorphic to R. In fact denote S1 = {(x, y) ∈ R2 :

x2 + y2 = 1}, and define the nord and south stereographic projections as

p± : S1 \ {(0,±1)} → R

(x, y) 7→ x

1∓ y

It is not difficult to verify that for every point p ∈ S1 there exists an open

set U containing p, such that the image of U via one of the two stereographic

projections is an open set in R.

(d) the zero set of the function f : R2 → R, f(x, y) = xy

The set E = {(x, y) ∈ R2 : xy = 0} is not locally Euclidean because no

neighborhood U of the origin in E is homeomorphic to R. To prove this

last statement argue by contradiction: suppose that there exist an homeo-

morphism ϕ : U → R. Then U ′ = U \ {(0, 0)} has at least 4 connected

components while ϕ(U ′) has just 2 connected components. The contradiction

arises from the fact that a homeomorphism preserves connected components.

(e) the “bent line” {(x, y) ∈ R2 | x, y ≥ 0, xy = 0}.

The set E{(x, y) ∈ R2
+ : xy = 0} is globally homeomorphic to R via the

homeomorphism

ϕ : E → R

(x, y) 7→

{
x if y = 0

−y if x = 0
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Exercise 1.2. If a space M is locally Euclidean of dimension n at some point p, show

that p has an open neighborhood that is homeomorphic to the whole space Rn, or to

a open ball Br(x).

Deduce the equivalent definitions of topological n-manifold.

We know that the there is an open neighborhood U of p and a homeomorpshism

ϕ from U to an open subset ϕ(U) of Rn. Then we can find a ball B(ϕ(p), r) ⊆
ϕ(U) ⊆ Rn for some r > 0. Let us consider the map ψ : B(ϕ(p), r) → Rn given

by ψ(x) := x−ϕ(p)
r−‖x−ϕ(p)‖ . One can verify that ψ is a homeomorphism with inverse

ψ−1(y) := ϕ(p) + y
1+‖y‖ . Set U ′ := ϕ−1(B(ϕ(p), r)) ⊆M , which is a neighborhood of

p in M and the map θ := ψ ◦ ϕ : U ′ → Rn. We showed that θ is a homeomorphism

since ψ and ϕ are both homeomorphisms.

Exercise 1.3. The line with two origins is the space M obtained as quotient of

the space X = {±1} × R by the equivalence relation (i, x) ∼ (j, y) iff x = y 6= 0.

(a) Show that M is locally Euclidean and second countable, but not Hausdorff.

Denote π : X →M the quotient map (i, x) 7→ [(i, x)].

The two “origins” are the equivalence classes of the points (i, 0) ∈ X (for

i = ±1); these classes have just one element each and we denote them 0i =

[(i, 0)] = {(i, 0)} ∈ M . In contrast, the equivalence class of any other point

(i, x) ∈ X with x 6= 0 is the two-point set x̃ = [(i, x)] = {(1, x), (−1, x)} ∈M .

Therefore M is the set of equivalence classes

M = X /∼ = {0+} ∪ {0−} ∪ {x̃}x6=0.

The space M is locally Euclidean of dimension 1 because it is the union

of two open sets Ri = {[(i, x)] ∈ M : x ∈ R} (for i = ±1), each of which is

homeomorphic to R via the map

R→ Ri : x 7→ [(i, x)].

To see that the sets Ri are open in the quotient topology, note that π−1(Ri) =

X \ 0−i, which is open in X.

Moreover, M is second countable because it is the union of two second

countable open subsets, namely, the sets Ri.
Finally M is not Hausdorff since every pair of open subsets containing 0−

and 0+ respectively have non-empty intersection.

(b) Find a sequence of points in M that converges to two different points, and

show that this cannot happen in a Hausdorff space. Recall that given a

sequence {xn}n∈N in X, x is a limit point if for each neighbourhood Ux of x

there exist a N such that xn ∈ Ux for each n ≥ N .

Take as a sequence in M π((−1)n, 1n); 0+ and 0− are both limit point.

If Y is a Housdorff space if the limit exist is unique: suppose otherwise that

x, y are two limits of a given sequence {xn}n∈N. Then for every neighbourhood

Ux of x and Uy of y we have N,M such that xn ∈ Ux for each n ≥ N and

xn ∈ Uy for each n ≥M , in particular xn ∈ Ux∪Uy for each n ≥ max(N,M).

This implies that any any neighbourhood of x and y intersect, contradicting

the Hausdorff hypothesis.

Exercise 1.4. Let N be an open subset of a topological n-manifold M .

(a) Show that N is a topological n-manifold.

First, we note that a subset of a Hausdorff (resp. second countable) space

is a Hausdorff (resp. secound countable) space. Indeed, let S be a subset
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of a topological space X, endowed with the subpspace topology. If X is X

is Hausdorff, to show that S is Hausdorff as well, take two distinct points

p, q ∈ S. Let U, V be disjoint neighborhoods of p, q in X. Then the sets

U ′ = U ∩ S, V ′ = V ∩ S are disjoint open neighborhoods of p, q in S. If X

is second countable, let {Ui}i∈I be a countable basis for the topology of X.

Then {Ui ∩ S}i∈I is a countable basis for S. Thus S is second-countable.

Now let M be a topological n-manifold, and let U ⊂ M be an open set,

endowed with the subspace topology.

By the results mentioned above, U is Hausdorff and secound countable.

Let us show that N is locally Euclidean. For each point ∀p ∈ N , there

exists an open neighborhood U ⊂ M that is homeomorphic to an open set

V ⊆ Rn. Let ϕ : U → V be a homeomorphism. Since N is open in M , the

set U ∩N is open in U . Therefore ϕ(U ∩N) is open in V (and thus, in Rn),

and the restricted map ϕ : U ∩ N → ϕ(U ∩ N) is a homeomorphism. This

shows that N is locally Euclidean.

(b) Show that any smooth structure A on M determines a smooth structure B
on N , consisting of the charts (U,ϕ) ∈ A such that U ⊆ N .

We will use the following fact: For any chart (U,ϕ) ∈ A, the map ϕ|V is

also a chart of A for any open set V ⊆ U .

Proof. Note that ϕ|V : V → ϕ(V ) is a homeomorphism from an open subset

of M to an open subset of ϕ(U) ⊆ Rn, therefore ϕ|V is a topological chart of

M .

To show that ϕ|V ∈ A, since A is a maximal smooth atlas, it suffices to

show that the chart ϕ|V is smooth compatible with all charts ψ ∈ A. And

indeed, it is compatible because the transition maps

ϕ|V ◦ ψ−1 = (ϕ ◦ ψ−1)|ψ(V )

ψ ◦ (ϕ|V )−1 = (ψ ◦ ϕ−1)|ϕ(V )

are smooth since they are restrictions of transition maps of A. �

Now let’s go back to N . N is a topological n-manifold because it is an open

subset of M . Each element of B is a topological chart of N , because it is an

homeomorphism ϕ : U → V , where U ⊆ N is an open subset of M (hence

of N) and V is an open subset of Rn. These charts are smooth compatible

because they are taken from the smooth structure of M . The domains of the

charts of B cover N , because for each point p ∈ N there is a chart ϕ ∈ A of

M with domain U 3 p, and then the restriction ϕ|U∩N : U ∩N → ϕ(U ∩N)

is a chart in B that is defined at p. All this proves that B is a smooth atlas

for N .

(Here we used the fact that ϕ ∈ A, then the chart ϕ|V ∈ A for any open set

V ⊆ Domϕ. To see this, since A is maximal, it suffices to show that the chart

ϕ|V is smooth compatible with all charts ψ ∈ A. And indeed, it is compatible

because the transition maps

ϕ|V ◦ ψ−1 = (ϕ ◦ ψ−1)|ψ(V )

ψ ◦ (ϕ|V )−1 = (ψ ◦ ϕ−1)|ϕ(V )

are smooth since they are restrictions of transition maps of A.)

Finally, let us prove that B is maximal as a smooth atlas. Let ψ be a chart

of N that is smooth-compatible with all charts of B. We have to show that

ψ belongs to B. It suffices to show that ψ is compatible with all charts of A,

because this implies by maximality of A that ψ ∈ A, and it follows that ψ ∈ B
since the domain of ψ is contained in N . Thus we just have to show that ψ is
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compatible with every chart ϕ ∈ A, i.e. that the transition maps ϕ ◦ψ−1 and

ψ ◦ ϕ−1 are smooth. To see that these maps are smooth we rewrite them as

ϕ ◦ ψ−1 = ϕ̃ ◦ ψ−1

ψ ◦ ϕ−1 = ψ ◦ ϕ̃−1

where ϕ̃ = ϕ|N∩Domϕ is the restriction of ϕ. The chart ϕ̃ is a chart of B, since

it is a chart of A and its domain is contained in N . Therefore ψ is smooth

compatible with ϕ̃, hence the transition maps are smooth.

Exercise 1.5. Show that the product of two topological manifolds is a topological

manifold. What is its dimension?

Let M , N be topological manifolds of respective dimensions m, n. Let us show

that the product M × N is a topological manifold of dimension m × n. The space

M ×N is Hausdorff and second countable, since a product of Hausdorff (resp. second

countable) spaces is a Hausdorff (resp. second countable) space.

Let us show that M × N is locally Euclidean of dimension m + n. For every

(p, q) ∈M ×N , we can find open neighborhoods U ⊂M , V ⊆ N of p and q that are

respectively homeomorphic to Rm and Rn. It follows that the set U ×V (which is an

open neighborhood of (p, q) in the product topology) is homeomorphic to Rm+n.

Exercise 1.6. We have seen in the lecture that Sn is a topological n-manifold. Show

that the charts (U+,−
i , ϕ+,−

i )i=1,...,n form a smooth atlas for Sn.

We only need to verify that the transition functions are smooth. For i, j different

indices, we can assume i < j we can explicitly compute the transition functions to

be:

ϕ+,−
i ◦ ϕ+,−

j (u1, . . . , un) = (u1, . . . , ûi, . . . ,+,−(1− |u|2)
1
2 , . . . , un).

A similar formula holds for i > j and for i = j one can compute that ϕ+
i ◦(varphi

−
i )−1 =

ϕ−i ◦ (varphi+i )−1 = IdBn .

Exercise 1.7 (To hand in). Show that the projective space Pn, defined as the

quotient of Rn+1\{0} by the equivalence relation x ∼ y iff x = λ y for some λ ∈ R\{0},
is a smooth n-manifold with atlas A = {(Ui, ϕi)}i=0,...,n given by

Ui := {[x] ∈ Pn | xi 6= 0}, ϕi([x]) =

(
x0
xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
,

where [x] ∈ Pn denotes the equivalence class of a point x = (x0, . . . , xn) ∈ Rn+1\{0}.

Exercise 1.8. Show that the n-torus Tn = Rn/Zn, defined as the quotient of Rn by

the equivalence relation x ∼ y iff y − x ∈ Zn, is a topological n-manifold.

Let π : Rn → Tn be the quotient map

x 7→ [x] = {x+ z : z ∈ Zn}.

Note that two points x, y of Rn are in the same equivalence class if and only if the

coordinates xi, yi coincide modulo 1 for each i. (In other words, the real numbers

xi, yi have the same integer part.)

(a) π is an open map. Indeed, let U ⊆ Rn be an open set. To see that π(U)

is open in the quotient topology, we verify that its preimage π−1(π(U)) =⋃
z∈Zn U + {z} is open, being a union of translate copies of U .

(b) Tn is second countable. Indeed, the image of any (countable) topological basis

by a surjective open map is a (countable) topological basis.
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(c) To prove that Tn is locally Euclidean, we show that:

The quotient map π is locally injective, i.e., each point x ∈ X has an open

neighborhood U where the quotient map π is injective. Indeed, let U be an

open neighborhood of x with diameter < 1. Then there are no two different

points x′, x′′ ∈ U such that x′′ − x′ ∈ Zn. Therefore π is injective on U .

Furthermore, the set π(U) is open in Tn, and the restricted quotient map

π : U → π(U) is a homeomorphism because it is bijective and open. This

proves that the Tn is locally Euclidean of dimension n.

(d) Tn is Hausdorff. Take two different points π(x), π(y) ∈ Tn. Then there is

some i such that the coordinates xi, yi are different modulo 1. Let ε > 0

be the distance between the numbers xi, yi taken modulo 1, that is, ε =

minz∈Z yi−(xi+z). This number is the least we would have to move yi so that

it coincides with xi modulo 1. Then the Euclidean open balls U = B(x, ε2),

V = B(y, ε2) satisfy π(U) ∩ π(V ) = ∅ because for every pair of points in U

and V , their i-th coordinates do not coincide modulo 1. The sets π(U), π(V )

are disjoint open neighborhoods of π(x), π(y), as needed to show that Tn is

Hausdorff.

Exercise 1.9. Show that (R, idR) and (R, ψ : x 7→ x3) define to different smooth

structures on the real line.

The charts φ and idR are not smoothly compatible since the transition map idR ◦φ−1 :

y 7→ y1/3 is not smooth. Therefore, the atlases A and B define different smooth struc-

tures.
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