Foundations of Data Science Ecole Polytechnique Fédérale, Lausanne: Fall 2022
Urbanke September 21, 2022

Problem Set 1 —Due Friday, September 30, before class starts

For the Exercise Sessions on September 23

Last name First name SCIPER Nr Points

Problem 1: Review of Random Variables

Let X and Y be discrete random variables defined on some probability space with a joint pmf pxy (z,y).
Let a,b € R be fixed.

(a) Prove that E[aX + bY] = aE[X] + DE[Y]. Do not assume independence.
(b) Prove that if X and Y are independent random variables, then E[X - Y] = E[X] - E[Y].

(c) Assume that X and Y are not independent. Find an example where E[X - Y] # E[X] - E[Y], and
another example where E[X - Y] = E[X] - E[Y].

(d) Prove that if X and Y are independent, then they are also uncorrelated, i.e.,
Cov(X,Y)=E[(X —E[X])(Y —E[Y]] =0. (1)

(e) Find an example where X and Y are uncorrelated but dependent.

(f) Assume that X and Y are uncorrelated and let 0% and o2 be the variances of X and Y, respec-
tively. Find the variance of aX 4 bY and express it in terms of O'go 032,7 a,b.
Hint: First show that Cov(X,Y) =E[X - Y] — E[X] - E[Y].

Solution 1. (a)

ElaX +bY] = > (az+by)pxy(z,y)

= ZamZpr(:c,y)+ZbyZPXY($7y)
= a) apx(a)+b> ypy(y)
_ EX+EY).

(b) If X and Y are independent, we have pxy (z,y) = px(z)py (y), then

EX-Y] = > > aypxy(z,y)
X Y

YD apx(@)ypy (y)
X Y

> apx (@)Y upy(y)
X Y
— E[X]-E[Y]



(c) For the first example, suppose Pr(X =0,Y =1)=Pr(X =1,Y =0) = 1, and Pr(X =0,Y
0)=Pr(X=1,Y=1)=0. X,Y are dependent, and we have E[X Y] =0 while E[X|E[Y] =

For the second example, suppose Pr(X = -1,Y =0)=Pr(X =0,Y =1)=Pr(X =1,Y = :.
X,Y are dependent. Obviously we have E[X - Y] =0, and furthermore E[X] = 0, hence E[X]E[Y] =0.

(d)If X and Y are independent, we have pxy(z,y) = px(z)py (y), then
E[(X —EX]D(Y —E[Y]] = > > (¢ —EXD(y—EY])pxy(z,y)
= 3 (@ - EIX])(y - EIY]) px(2)py (9)

Thus, X and Y are uncorrelated.
(e) One example where X and Y are uncorrelated but dependent is

% if (:Cay) € {(7130)7(170)3(071)}7
0 otherwise.

ny(l',y) = {

First, it can be easily checked that E[X - Y] =0 = E[X] - E[Y] (note that E[X] =0). Second, X and
Y are dependent since Pxy(1,0) = £ but Px(1)Py(0) =

(f) First, we have

12
3 X3

Cov(X,Y) = E[(X—E[X])(Y —E[Y])
= IE[XY XE[Y] -
E[X - Y] - E[X]-E[Y].

Thus, Cov(X,Y) =0 if and only if E[X - Y] =E[X]-E[Y].
Then,
oixipy = ElaX +bY —E[aX +bY])?

= E[(aX +bY)?] — (E[aX +bY])?
= @®E[X?] + 2abE[X - Y] + V’E[Y?] — ’E[X]? — 2abE[X|E[Y] — b’E[Y]?

= o’ (EX?] -E[X]*) + 0*(E[Y?] - E[Y]?)

a’o% + bo?.

We remark that since the independence of X and Y implies Cov(X,Y) = 0, we also have 03 Xty =
a’0% +b%c% if X and Y are independent.

Problem 2: Review of Gaussian Random Variables

A random variable X with probability density function

1 _(@=m)?
pX(x) = me 202 (2)

is called a Gaussian random variable.

(a) Explicitly calculate the mean E[X], the second moment E[X?], and the variance Var[X] of the
random variable X.



(b) Let us now consider events of the following kind:
Pr(X < a). (3)

Unfortunately for Gaussian random variables this cannot be calculated in closed form. Instead, we will
rewrite it in terms of the standard Q-function:

e )

Express Pr(X < a) in terms of the Q-function and the parameters m and o2 of the Gaussian pdf.

Like we said, the Q-function cannot be calculated in closed form. Therefore, it is important to have
bounds on the Q-function. In the next 3 subproblems, you derive the most important of these bounds,
learning some very general and powerful tools along the way:

(c¢) Derive the Markov inequality, which says that for any non-negative random variable X and positive
a, we have

E[X]

Pr(X >a) <
a

(5)

(d) Use the Markov inequality to derive the Chernoff bound: the probability that a real random variable
Z exceeds b is given by

Pr(Z >b) <E[eZD],  s>o0. (6)

Solution 2. (a) First,

E[X] = /OO xpx (z) dx

° (@—m)?
/ xre 202 dx
V2ro? J_o

o0 u2 o0 1 u2
W/ w = dutm [ Vgt ®)

—
*

—
—_

—
—

[
3

where (x) follows by a change of variable w = —m and () follows since the first integrand in (??) is
an odd function and the second integrand in (??) is a probability density function. We remark that the
integral



known as Gaussian integral, can be evaluated explicitly to be /7. Second,

E[X?] = /OO ?*px (z) dx

— 00

(.t nz)

dx

2 o0
u’e 2a2du—|—7m ue 2a2du+m
vV 27r02 V2ro? J_w

a2 4+ 0+ m?

o? +m2,

e

—~
*
~

w2
=e” 207 du 9)

— 00 \/

—~
—
=

where (x) follows by a change of variable u = x —m and (f) follows from the same arguments in the
evaluation of E[X] and an integration by parts to the first integral in (?7):

0_2 w2 |® S w2
ule” 202 du = ———= | ue 202 — e 202 du
V2mro? V2mo? —o0 oo

= 0402
Therefore,
Var[X] = E[X -E[X]]?
= E[X?] - E[X]?
= 24+ m?—m2
(b)
o ]_ T — m 2
PX <a) = / e T dr
—o0 V2702

where (x) follows by a change of variable u = £

(c)

a e’}
E[X] = /xpx(m)dx—i—/ rpx () dv
0 a
> 0+a/ px(x) dz
= aP(X >a).
(d) Fix s > 0, then we have
P(Z>b) < Bs(Z-8)>0)

]P;(es(Zfb) > 60)

E[es(Z—b)]’

,\
INx |

where (%) follows from the Markov inequality.



(e) Let X be a Gaussian random variable with mean zero and unit variance, then we have
Q) = PX=1)

E |:es(X7:r)j|

,\
INx

(u—2) ,— %
e\ eT T du

1
V2T /
_ 7Sz+s _(u=s)2 s>2 du
=

= 675934’7’

where (%) follows from the Chernoff bound. In order to get the tightest bound, we need to minimize
—sx + s2/2 which gives s = x and then the desired bound is established.

Problem 3: Moment Generating Function

In the class we had considered the logarithmic moment generating function

#(s) :== InE[exp(sX)] anp x) exp(sx)

of a real-valued random variable X taking values on a finite set, and showed that ¢'(s) = E[X] where X
is a random variable taking the same values as X but with probabilities ps(z) := p(z) exp(sz) exp(—d(s)).

(a) Show that
¢"(s) = Var(X;) := E[X7] — E[X,]?
and conclude that ¢”(s) > 0 and the inequality is strict except when X is deterministic.

(b) Let @pin := min{z : p(z) > 0} and zpax := max{z : p(z) > 0} be the smallest and largest values
X takes. Show that

lim ¢'(s) = Tmin, and lim ¢'(s) = Tmax.
S§——00 5—00

Solution 3. (a) As ¢(s) := InE[exp(sX)], we have

(5) = et = BLX exp(sX) xp(~0(s))] = BLX.] (10)
o'(s) = E[X2exp(sX)] E[X exp(sX)|E[X exp(sX)] (1)

Elexp(sX)] Elexp(sX)]?

The second term is E[X,]? and the first term equals Y 22 exp(sz)/exp(¢(s)) = E[X2]. So ¢"(s) =
Var(X;). Moreover, Var(X;) > 0 with equality only when X is deterministic. But X is deterministic
only when X is.

(b) Observe that
E[X exp(sX)] E[X exp(sX)]exp(—5Tmax)

' = 12
#(s) Elexp(sX)] Elexp(sX)] exp(—$Tmaz) (12)
Z:c p(iﬂ)fﬂ exp(fs(xmaz - x))
(13)
Zm p(x) eXp(fs(zmax - I))
In the sums above, as s — oo, all terms vanish except the ones for & = .., . Hence we have
hm (bl(S) = pi(xmaw)xmaw = Tmazx (14)

§—0 p(mmam)

Similarly, we can show that lims_,_ o ¢'(8) = Tpin -



Problem 4: Hoeffding’s Lemma

Prove Lemma 2.3 in the lecture notes. In other words, prove that if X is a zero-mean random vari-
able taking values in [a,b] then

B[] < o l(a=b)?/4]

Expressed differently, X is [(a — b)?/4]-subgaussian.

Hint: You can use the following steps to prove the lemma:

1. Let A > 0. Let X be a random variable such that « < X <b and E[X] = 0. By considering the
convex function z — e**, show that

b a
AX] < Xa _ b 1
Ele ]_b—ae ot (15)

2. Let p=—a/(b—a) and h = A(b—a). Verify that the right-hand side of (8) equals e*(") where
L(h) = —hp +log(1 — p + pe™).

3. By Taylor’s theorem, there exists £ € (0,h) such that
h2
L(h) = L(0) + hL'(0) + EL”(Q'

Show that L(h) < h?/8 and hence E[e*¥] < N (b-a)*/8

Az

Solution 4. Since e** is convex in x we have for all a <z < b,

b—x r—a
e)\z S eAa €>\b.
b—a b—a

If we take the expected value of this wrt X and recall that E[X] =0 then it follows that

E[e*X] < b R L)

“b—a b—a

Consider the right-hand side. Note that we must have a < 0 and b > 0 since E[X] = 0. Set p =
—a/(b—a), 0<p<1,and X = A(b—a). The right-hand side can then be written as

(1= p)e P 4 peX (17P) < 3% — P l0-0)/4]

where in the first step we have used the inequality we have seen in class for the Bernoulli random variable
with parameter p.

An alternative way to solve this problem could be define ¢(\) = InE[e*X].

, d E[X X
¢(A)=:dA1nEkAX]=H;exq]
So ¢(0)=9=0
vy d o d EXeM]  E[XZ2eME[eM] — E[ XM E[X Y]
¢ ()‘) - a(i) ()‘) - a E[(i)‘X] - ]E[EAXP



For A =0, we have
¢"(0) = E[X?] - E[X]* = Var(X)

Also, we have ¢(A) < ¢(0) + ¢’ (0)A + QS"(O)% = % Var(X) As X is random variable taking values in

[a,b]. The largest variance is achieved when Pr{X = a} = ;& Pr{X =b} = =%

(16)

Therefore we have

X is [(b— a)?/4]-subgaussian.

Problem 5: Expected Maximum of Subgaussians

Let {X;}", be a collection of n o?-subgaussian random variables, not necessarily independent of
each other. Let Y = max;c(12.... ny Xi. Prove that E[Y] < /202logn. Hint: Recall that by Jensen,
e E[X] < E[e/\X].

Solution 5. Consider the MGF of Y, we have the following relations for all A > 0

AY AX;
= A max  X,)]<E[ Y 1.
Elet] =Elexp(A _ max  X;)] < [46{12 }e ]

Note that by the linearity of expectation (this does not require independence) and the assumptions that
{X;}*_, are o?-subgaussian random variables, we have

E[e*Y] < neXo’2.

Using the hints, we have
eAE[Y] < 6>\20/2+10gn’

which implies that
EY] < g
< A5+ 5 logn.

Optimizing over A, we have the optimal \* = 21{;’# , which gives us the desired inequality.



