EPFL - Fall 2022

F. Carocci, M. Cossarini

Exercise Series 4 - More on Tangent vectors and smooth embeddings 2022-10-12

Tangent spaces and Tangent bundles.

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let φ and ψ be smooth charts on a smooth manifold M defined on the same domain U. Let call Cx^1, \ldots, x^n) the coordinates induced by φ and Cz^1, \ldots, z^n) the coordinates induced by ψ . If the first coordinate functions x^1 and z^1 agree $(x^1 = z^1 \text{ on } U)$, this does not imply $\frac{\partial}{\partial x^1}|_p = \frac{\partial}{\partial z^1}|_p$ for $p \in U$.

Work out a simple example of this fact e.g. on $M = \mathbb{R}^2$ by considering on the one hand the Cartesian coordinates (x, y) and on the other hand the chart (u, v) given by u = x, v = x + y.

This shows that $\frac{\partial}{\partial x^i}|_p$ depends on the whole system (x^1,\ldots,x^n) , not only on x^i .

Exercise 4.2 (The tangent space of a vector space). Let V be an n-dimensional vector space, endowed with the natural smooth structure given by picking an isomorphism $\mathbb{R}^n \to V$ (via the Smooth Charts Lemma)

(a) Fix $a \in V$. To every $v \in V$ we associate the curve passing through a

$$\gamma_v : \mathbb{R} \to V : t \mapsto a + tv$$

Show that the map $\Phi_a:V\to T_aV:v\mapsto \gamma_v'(0)$ is an isomorphism of vector spaces.

(b) Let $f: V \to W$ be a linear map between vector spaces V, W. Consider the differential $D_a f: T_a V \to T_{F(a)} W$ at any point $a \in V$. Identifying $T_a V \cong V$ and $T_{f(a)} W \cong W$ via the isomorphisms Φ_a , $\Phi_{f(a)}$, show that $D_a f$ is identified with f. That is, show that the following diagram commutes:

$$T_{a}V \xrightarrow{D_{a}f} T_{f(a)}W$$

$$\Phi_{a} \uparrow \qquad \uparrow \Phi_{f(a)}$$

$$V \xrightarrow{f} W$$

Exercise 4.3 (Differential of the determinant function). Consider the determinant function det: $M_n(\mathbb{R}) \to \mathbb{R}$, where $M_n(\mathbb{R}) \simeq \mathbb{R}^{n \times n}$ is the vector space of real $n \times n$, with its natural smooth structure. We want to compute its differential transformation D_A det at any matrix $A \in GL_n(\mathbb{R})$ (i.e. at any invertible matrix),

$$D_A \det : T_A M_n(\mathbb{R}) \to T_{\det(A)} \mathbb{R}$$

(Note that we may identify $T_A M_n(\mathbb{R})$ with $M_n(\mathbb{R})$ and $T_{\det(A)}\mathbb{R}$ with \mathbb{R} .)

- (a) Verify that det is a smooth function.

 Hint: Write the determinant as a sum over all n-permutations.
- (b) Show that the differential of det at the identity matrix $I \in M_n(\mathbb{R})$ is

$$D_I \det(B) = \operatorname{tr}(B).$$

where tr denotes the trace.

(c) Show that for arbitrary $A \in GL_n(\mathbb{R}), B \in M_n(\mathbb{R})$.

$$D_A \det(B) = (\det A) \operatorname{tr}(A^{-1}B)$$

Hint: Write $det(A + tB) = (det A)(det(I + tA^{-1}B))$.

(d) Show that D_A det is the null linear transformation if A = 0 and $n \ge 2$.

Exercise 4.4 (Tangent Bundles). (a) Show that $T_{(m_1,m_2)}M_1 \times M_2 \cong T_{m_1}M_1 \oplus T_{m_2}M_2$. Show that if fact this extends to the tangent bundles, i.e. there is a diffeomorphism $T(M_1 \times M_2) \cong TM_1 \times TM_2$.

(b) Show that $T\mathbb{S}^1$ is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}$.

Immersions and smooth Embeddings.

Exercise 4.5. Consider the map

$$f: \mathbb{R} \to \mathbb{R}^2: t \mapsto (2 + \tanh t) \cdot (\cos t, \sin t).$$

Show that f is an injective immersion. Is it a smooth embedding?

Exercise 4.6. Consider the following subsets of \mathbb{R}^2 . Which is an embedded submanifold? Which is the image of an immersion?

- (a) The "cross" $S := \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}.$
- (b) The "corner" $C := \{(x, y) \in \mathbb{R}^2 \mid xy = 0, x \ge 0, y \ge 0\}$

Exercise 4.7. Let N be a embedded n-submanifold of some m-manifold M. Show that there exists an open set $U \subseteq M$ that contains N as a closed subset.

Exercise 4.8 (To hand in). Let $f: M \to N$ be an injective immersion of smooth manifolds. Show that there exists a closed embedding $M \to N \times \mathbb{R}$.

Hint: Recall that there exists a proper map $g: M \to \mathbb{R}$ (Exercise 3.2)