Tangent spaces and Tangent bundles.

Exercise 4.1 (A little heads-up regarding coordinate vectors). Let φ and ψ be smooth charts on a smooth manifold M defined on the same domain U. Let call $C x^{1}, \ldots, x^{n}$) the coordinates induced by φ and $\left.C z^{1}, \ldots, z^{n}\right)$ the coordinates induced by ψ. If the first coordinate functions x^{1} and z^{1} agree $\left(x^{1}=z^{1}\right.$ on U), this does not imply $\left.\frac{\partial}{\partial x^{1}}\right|_{p}=\left.\frac{\partial}{\partial z^{1}}\right|_{p}$ for $p \in U$.

Work out a simple example of this fact e.g. on $M=\mathbb{R}^{2}$ by considering on the one hand the Cartesian coordinates (x, y) and on the other hand the chart (u, v) given by $u=x, v=x+y$.
This shows that $\left.\frac{\partial}{\partial x^{i}}\right|_{p}$ depends on the whole system $\left(x^{1}, \ldots, x^{n}\right)$, not only on x^{i}.
Exercise 4.2 (The tangent space of a vector space). Let V be an n-dimensional vector space, endowed with the natural smooth structure given by picking an isomorphism $\mathbb{R}^{n} \rightarrow V$ (via the Smooth Charts Lemma)
(a) Fix $a \in V$. To every $v \in V$ we associate the curve passing through a

$$
\gamma_{v}: \mathbb{R} \rightarrow V: t \mapsto a+t v
$$

Show that the map $\Phi_{a}: V \rightarrow T_{a} V: v \mapsto \gamma_{v}^{\prime}(0)$ is an isomorphism of vector spaces.
(b) Let $f: V \rightarrow W$ be a linear map between vector spaces V, W. Consider the differential $D_{a} f: T_{a} V \rightarrow T_{F(a)} W$ at any point $a \in V$. Identifying $T_{a} V \cong V$ and $T_{f(a)} W \cong W$ via the isomorphisms $\Phi_{a}, \Phi_{f(a)}$, show that $D_{a} f$ is identified with f. That is, show that the following diagram commutes:

Exercise 4.3 (Differential of the determinant function). Consider the determinant function det $: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$, where $M_{n}(\mathbb{R}) \simeq \mathbb{R}^{n \times n}$ is the vector space of real $n \times n$, with its natural smooth structure. We want to compute its differential transformation D_{A} det at any matrix $A \in \mathrm{GL}_{n}(\mathbb{R})$ (i.e. at any invertible matrix),

$$
D_{A} \operatorname{det}: T_{A} M_{n}(\mathbb{R}) \rightarrow T_{\operatorname{det}(A)} \mathbb{R}
$$

(Note that we may identify $T_{A} M_{n}(\mathbb{R})$ with $M_{n}(\mathbb{R})$ and $T_{\operatorname{det}(A)} \mathbb{R}$ with \mathbb{R}.)
(a) Verify that det is a smooth function.

Hint: Write the determinant as a sum over all n-permutations.
(b) Show that the differential of det at the identity matrix $I \in M_{n}(\mathbb{R})$ is

$$
D_{I} \operatorname{det}(B)=\operatorname{tr}(B)
$$

where tr denotes the trace.
(c) Show that for arbitrary $A \in \mathrm{GL}_{n}(\mathbb{R}), B \in M_{n}(\mathbb{R})$.

$$
D_{A} \operatorname{det}(B)=(\operatorname{det} A) \operatorname{tr}\left(A^{-1} B\right)
$$

Hint: Write $\operatorname{det}(A+t B)=(\operatorname{det} A)\left(\operatorname{det}\left(I+t A^{-1} B\right)\right)$.
(d) Show that D_{A} det is the null linear transformation if $A=0$ and $n \geq 2$.

Exercise 4.4 (Tangent Bundles). (a) Show that $T_{\left(m_{1}, m_{2}\right)} M_{1} \times M_{2} \cong T_{m_{1}} M_{1} \oplus$ $T_{m_{2}} M_{2}$. Show that if fact this extends to the tangent bundles, i.e. there is a diffeomorphism $T\left(M_{1} \times M_{2}\right) \cong T M_{1} \times T M_{2}$.
(b) Show that $T \mathbb{S}^{1}$ is diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$.

Immersions and smooth Embeddings.

Exercise 4.5. Consider the map

$$
f: \mathbb{R} \rightarrow \mathbb{R}^{2}: t \mapsto(2+\tanh t) \cdot(\cos t, \sin t)
$$

Show that f is an injective immersion. Is it a smooth embedding?
Exercise 4.6. Consider the following subsets of \mathbb{R}^{2}. Which is an embedded submanifold ? Which is the image of an immersion ?
(a) The "cross" $S:=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0\right\}$.
(b) The "corner" $C:=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0, x \geq 0, y \geq 0\right\}$

Exercise 4.7. Let N be a embedded n-submanifold of some m-manifold M. Show that there exists an open set $U \subseteq M$ that contains N as a closed subset.

Exercise 4.8 (To hand in). Let $f: M \rightarrow N$ be an injective immersion of smooth manifolds. Show that there exists a closed embedding $M \rightarrow N \times \mathbb{R}$.
Hint: Recall that there exists a proper map $g: M \rightarrow \mathbb{R}$ (Exercise 3.2)

