Problem Set 3 (Graded) —Due Friday, October 28, before class starts For the Exercise Sessions on Oct 14 and Oct 21

Last name	First name	SCIPER Nr	Points

Problem 1: Some review problems on linear algebra

(a) (Frobenius norm) Prove that $\|A\|_{F}^{2}=\operatorname{trace}\left(A^{H} A\right)$.
(b) (Singular Value Decomposition) Let $\sigma_{i}(A)$ denote the $i^{\text {th }}$ singular value of an $m \times n$ matrix A. Prove that $\|A\|_{F}^{2}=\sum_{i=1}^{\min \{m, n\}} \sigma_{i}^{2}(A)$
(c) (Projection Matrices) Consider a set of k orthonormal vectors in \mathbb{C}^{n}, denoted by $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \cdots, \mathbf{u}_{\mathbf{k}}$. The projection matrix (that projects an arbitrary vector into the subspace spanned by these orthonormal vectors) is given by

$$
\begin{equation*}
P=\sum_{i=1}^{k} \mathbf{u}_{i} \mathbf{u}_{i}^{H} \tag{1}
\end{equation*}
$$

- Prove that this matrix is Hermitian, i.e., $P^{H}=P$.
- Prove that this matrix is idempotent, i.e., $P^{2}=P$. (In words, projecting twice into the same subspace is the same as projecting only once.)
- Prove that $\operatorname{trace}(P)=k$, i.e., equal to the dimension of the subspace.
- Prove that the diagonal entries of P must be real-valued and non-negative. Then, prove that the diagonal entries of P cannot be larger than 1 (this is a little more tricky).

Problem 2: Eckart-Young Theorem

In class, we proved the converse part of the Eckart-Young theorem for the spectral norm. Here, you do the same for the case of the Frobenius norm.
(a) For any matrix A of dimension $m \times n$ and an arbitrary orthonormal basis $\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right\}$ of \mathbb{C}^{n}, prove that

$$
\begin{equation*}
\|A\|_{F}^{2}=\sum_{k=1}^{n}\left\|A \mathbf{x}_{k}\right\|^{2} \tag{2}
\end{equation*}
$$

(b) Consider any $m \times n$ matrix B with $\operatorname{rank}(B) \leq p$. Clearly, its null space has dimension no smaller than $n-p$. Therefore, we can find an orthonormal set $\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n-p}\right\}$ in the null space of B. Prove that for such vectors, we have

$$
\begin{equation*}
\|A-B\|_{F}^{2} \geq \sum_{k=1}^{n-p}\left\|A \mathbf{x}_{k}\right\|^{2} . \tag{3}
\end{equation*}
$$

(c) (This requires slightly more subtle manipulations.) For any matrix A of dimension $m \times n$ and any orthonormal set of $n-p$ vectors in \mathbb{C}^{n}, denoted by $\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n-p}\right\}$, prove that

$$
\begin{equation*}
\sum_{k=1}^{n-p}\left\|A \mathbf{x}_{k}\right\|^{2} \geq \sum_{j=p+1}^{r} \sigma_{j}^{2} \tag{4}
\end{equation*}
$$

Hint: Consider the case $m \geq n$ and the set of vectors $\left\{\mathbf{z}_{1}, \cdots, \mathbf{z}_{n-p}\right\}$, where $\mathbf{z}_{k}=V^{H} \mathbf{x}_{k}$. Express your formulas in terms of these and the SVD representation $A=U \Sigma V^{H}$.
(d) Briefly explain how (a)-(c) imply the desired statement.

Problem 3: A Hilbert space of matrices

In this problem, we consider the set of matrices $A \in \mathbb{R}^{m \times n}$ with standard matrix addition and multiplication by scalar.
(a) Briefly argue that this is indeed a vector space, using the definition given in class.
(b) Show that $\langle A, B\rangle=\operatorname{trace}\left(B^{H} A\right)$ is a valid inner product.
(c) Explicitly state the norm induced by this inner product. Is this a norm that you have encountered before?
(d) Consider as a further inner product candidate the form $\langle A, B\rangle=\operatorname{trace}\left(B^{H} W A\right)$, where W is a square $(m \times m)$ matrix. Give conditions on W such that this is a valid inner product. Explicit and detailed arguments are required for full credit.

Problem 4: Haar Wavelet

This problem is taken from Vetterli/Kovacevic, p. 295.
Consider the wavelet series expansion of continuous-time signals $f(t)$ and assume that $\psi(t)$ is the Haar wavelet.
(a) Give the expansion coefficients for $f(t)=1, t \in[0,1]$, and 0 otherwise.
(b) Verify that for $f(t)$ as in Part (a), $\sum_{m} \sum_{n}\left\|\left\langle\psi_{m, n}, f\right\rangle\right\|^{2}=1$ (i.e., Parseval's identity).
(c) Consider $f_{1}(t)=f\left(t-2^{-i}\right)$, where i is a positive integer. Give the range of scales over which expansion coefficients are non-zero. (Take $f(t)$ as in Part (a).)
(d) Same as above, but now for $f_{2}(t)=f(t-1 / \sqrt{2})$. (Take $f(t)$ as in Part (a).)

Problem 5: Dual Representation of Norm

(a) Assume that $p>0$ and $q>0$ fulfils $1 / p+1 / q=1$ - Show that the following inequality holds for all $a \geq 0$ and $b \geq 0$.

$$
\begin{equation*}
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \tag{5}
\end{equation*}
$$

Show that the equality holds if $a^{p}=b^{q}$. [Hint: Use the concavity of \log function]
(b) Given vectors $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{y} \in \mathbb{R}^{n}$ show that,

$$
\begin{equation*}
\frac{\sum_{i=1}^{n}\left|x_{i} y_{i}\right|}{\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}} \leq 1 \tag{6}
\end{equation*}
$$

What is the condition for equality?
(c) Show that

$$
\begin{equation*}
\|\mathbf{x}\|_{p}=\sup <\mathbf{y}, \mathbf{x}>: \mathbf{y} \in \mathbb{R}^{n},\|\mathbf{y}\|_{p^{*}}=1 \tag{7}
\end{equation*}
$$

where $1 / p+1 / p^{*}=1$

