
Foundations of Data Science Ecole Polytechnique Fédérale, Lausanne: Fall 2022
Urbanke September 30, 2022

Problem Set 2 —Due Friday, October 14, before class starts
For the Exercise Sessions on September 30 and Oct 7

Last name First name SCIPER Nr Points

Problem 1: Entropy and pairwise independence

Suppose X , Y , Z are pairwise independent fair flips, i.e., I(X;Y ) = I(Y ;Z) = I(Z;X) = 0 .

(a) What is H(X,Y ) ?

(b) Give a lower bound to the value of H(X,Y, Z) .

(c) Give an example that achieves this bound.

Solution 1. (a) Since X , Y , Z are pairwise independent fair flips, H(X) = H(Y ) = H(Z) = 1 .
H(X,Y ) = H(X) +H(Y |X) = H(X) +H(Y )− I(X;Y ) = 2 .

(b) H(X,Y, Z) = H(X,Y ) +H(Z|X,Y ) ≥ H(X,Y ) = 2

(c) Let Z = X + Y mod 2 , then H(Z|X,Y ) = 0 and H(X,Y, Z) = H(X,Y ) .

Problem 2: Divergence and L1

Suppose p and q are two probability mass functions on a finite set U . (I.e., for all u ∈ U , p(u) ≥ 0
and

∑
u∈U p(u) = 1 ; similarly for q .)

(a) Show that the L1 distance ‖p− q‖1 :=
∑
u∈U |p(u)− q(u)| between p and q satisfies

‖p− q‖1 = 2 max
S:S⊂U

p(S)− q(S)

with p(S) =
∑
u∈S p(u) (and similarly for q ), and the maximum is taken over all subsets S of U .

For α and β in [0, 1] , define the function d2(α‖β) := α log α
β + (1− α) log 1−α

1−β . Note that d2(α‖β) is

the divergence of the distribution (α, 1− α) from the distribution (β, 1− β) .

(b) Show that the first and second derivatives of d2 with respect to its first argument α satisfy
d′2(β‖β) = 0 and d′′2(α‖β) = log e

α(1−α) ≥ 4 log e .

(c) By Taylor’s theorem conclude that

d2(α‖β) ≥ 2(log e)(α− β)2.
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(d) Show that for any S ⊂ U
D(p‖q) ≥ d2(p(S)‖q(S))

[Hint: use the data processing theorem for divergence.]

(e) Combine (a), (c) and (d) to conclude that

D(p‖q) ≥ log e
2 ‖p− q‖

2
1.

(f) Show, by example, that D(p‖q) can be +∞ even when ‖p − q‖1 is arbitrarily small. [Hint:
considering U = {0, 1} is sufficient.] Consequently, there is no generally valid inequality that upper
bounds D(p‖q) in terms of ‖p− q‖1 .

Solution 2. (a) For any set S , we have

p(S)− q(S) =
∑
u∈S

p(u)− q(u) ≤
∑
u∈S
|p(u)− q(u)|. (1)

Similarly for the compliment set of S , we also have

q(Sc)− p(Sc) =
∑
u∈Sc

q(u)− p(u) ≤
∑
u∈Sc

|p(u)− q(u)|. (2)

Note that p(S) + p(Sc) = q(S) + q(Sc) = 1 . Thus q(Sc)− p(Sc) = p(S)− q(S) . Therefore, we have

2(p(S)− q(S)) ≤
∑
u∈S
|p(u)− q(u)|+

∑
u∈Sc

|p(u)− q(u)| =
∑
u∈U
|p(u)− q(u)| = ‖p− q‖1 (3)

For the choice S = {u : p(u) > q(u)} , we have

p(S)− q(S) =
∑
u∈S

p(u)− q(u) =
∑
u∈S
|p(u)− q(u)| (4)

q(Sc)− p(Sc) =
∑
u∈Sc

q(u)− p(u) =
∑
u∈Sc

|p(u)− q(u)| (5)

So, for this S , we have 2(p(S)− q(S)) = ‖p− q‖1 .

(b): Since d2(α||β) = α log α
β + (1− α) log 1−α

1−β ,

d′2(α||β) =
∂d2(α||β)

∂α
= log

α

β
+ log e− log

1− α
1− β

− log e = log
α(1− β)

β(1− α)
(6)

Therefore, we have d′2(β||β) = 0 .

d′′2(α||β) =
log e

α(1− α)
≥ 4 log e (7)

where equality achieves when α = 1/2 .

(c): Using Taylor’s theorem together with the Lagrange form of the remainder we see that for any f for
which f ′ is continuous,

f(α) = f(β) + (α− β)f ′(β) + (1/2)(α− β)2f ′′(xi) (8)

where xi is a value between α and β . With f(α) = d2(α‖β) , we thus have

d2(α‖β) = 0 + 0 + (1/2)(α− β)2f ′′(xi) ≥ 2 log(e)(α− β)2 (9)
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(d) Consider a deterministic channel with binary output

V =

{
1, if V ∈ S
0, if V 6∈ S

(10)

Thus,

d2(p(S)‖q(S)) = p(S) log
p(S)

q(S)
+ (1− p(S)) log

1− p(S)

1− q(S)
(11)

= p(V = 1) log
p(V = 1)

q(V = 1)
+ p(V = 0) log

p(V = 0)

q(V = 0)
(12)

= D(pV ‖qV ) (13)

By data processing theorem for divergence, D(p‖q) ≥ D(pV ‖qV )

(e) Combine (a),(c) and (d) and choosing S = {u : p(u) > q(u)} , we have ∀S

D(p‖q) ≥ d2(p(S)‖q(S)) ≥ 2(log e)(p(S)− q(S))2 =
log e

2
‖p− q‖21 (14)

(f) Let p be Bernoulli distribution with probability ε to be 1 and q is 0 with probability 1 . Then

D(p‖q) = p(1) log
p(1)

q(1)
+ p(0) log

p(0)

q(0)
= +∞ (15)

But ‖p− q‖1 = 2ε .

Problem 3: Generating fair coin flips from rolling the dice

Suppose X1, X2, . . . are the outcomes of rolling a possibly loaded die multiple times. The outcomes
are assumed to be iid. Let P(Xi = m) = pm , for m = 1, 2, . . . , 6, with pm unknown (but non-negative
and summing to one, clearly). By processing this sequence we would like to obtain a sequence Z1, Z2, . . .
of fair coin flips.

Consider the following method: We process the X sequence in successive pairs, (X1X2) , (X3X4) ,
(X5X6) , mapping (3, 4) to 0 , (4, 3) to 1 , and all the other outcomes to the empty string λ . After
processing X1, X2 , we will obtain either nothing, or a bit Z1 .

(a) Show that, if a bit is obtained, it is fair, i.e., P(Z1 = 0|Z1 6= λ) = P(Z1 = 1|Z1 6= λ) = 1/2 .

In general we can process the X sequence in successive n -tuples via a function f : {1, 2, 3, 4, 5, 6}n →
{0, 1}∗ where {0, 1}∗ denotes the set of all finite length binary sequences (including the empty string
λ ). [The case in (a) is the function where f(3, 4) = 0 , f(4, 3) = 1, and f(j,m) = λ for all other
choices of j and m .] The function f is chosen such that (Z1, . . . , ZK) = f(X1, . . . , Xn) are i.i.d.,
and fair (here K may depend on (X1, . . . , Xn) ).

(b) Letting H(X) denote the entropy of the (unknown) distribution (p1, p2, . . . , p6), prove the following
chain of (in)equalities.

nH(X) = H(X1, . . . , Xn)

≥ H(Z1, . . . , ZK ,K)

= H(K) +H(Z1 . . . , ZK |K)

= H(K) + E[K]

≥ E[K].

Consequently, on the average no more than nH(X) fair bits can be obtained from (X1, . . . , Xn) .
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(c) Describe how you would find a good f (with high E[K] ) for n = 4 which would work for any
distribution (p1, p2, ..., p6) .

Solution 3. (a) P (Z1 = 0|Z1 6= λ) = P (Z1 = 0, Z1 6= λ)/P (Z1 6= λ) = P (Z1 = 0)/P (Z1 6= λ) .
Similarly, P (Z1 = 1|Z1 6= λ) = P (Z1 = 1)/P (Z1 6= λ) . Let us now show that P (Z1 = 0) = P (Z1 = 1)
and this will complete the proof. Note that P (Z1 = 1) = P (X1 = 3, X2 = 4) = P (X1 = 3)P (X2 =
4) = p3p4 and P (Z1 = 0) = P (X1 = 4, X2 = 3) = P (X1 = 4)P (X2 = 3) = p4p3 . Therefore
P (Z1 = 1) = P (Z1 = 0) .

(b)

nH(X) = nH(Xi) (16)

= H(X1, . . . , Xn) [Independence of Xi] (17)

≥ H(f(X1, . . . , Xn)) [Data Processing Inequality] (18)

= H(Z1, . . . , ZK ,K) (19)

= H(K) +H(Z1, . . . , ZK |K) [Chain Rule] (20)

= H(K) +
∑
k

p(K = k)H(Z1, . . . , ZK |K = k) (21)

= H(K) +
∑
k

p(K = k)k [Z1, . . . , Zk are i.i.d and fair when K = k] (22)

= H(K) + E[K] (23)

≥ E[K] [Non-negativity of entropy] (24)

(c)
We have in total 64 many possible outcomes. We can only produce fair bits, regardless of the distribu-
tion, if we have permutations of the same sequence. e.g., 1555→ 00, 5155→ 01, 5515→ 10, 5551→ 11 .
Let us do the counting. A sequence can have 1, 2, 3 or 4 kinds of different symbols. An example to a
sequence of 3 different symbols is 1232 .

1: We cannot produce bits with 1 kind of different symbols because you cannot permute the sequence
and get another sequence. Therefore we map sequences of kind aaaa to the null string λ .
2: For 2 different symbols it will be either 3 of the same kind and 1 of another kind which gives 4
different permutations or 2 of the same kind and 2 of another kind, which gives 6 different permutations.
From the 4 different permutations of a ” 3 by 1 ” (aaab) sequence we can generate 2 fair bits, because
there are 4 permutations. From the the first 4 of the 6 different permutations of a ” 2 by 2 ” sequence
(aabb) we can generate 2 fair bits, and from the remaining 2 permutations we can generate 1 fair bit.
3: For 3 different symbols it has to be 2 of the same symbol, 1 of another symbol and 1 of another
symbol (aabc) . There are 4!/2! = 12 different ways to permute these sequence of type aabc . From the
first 8 we can generate 3 bits, and from the remaining 4 we can generate 2 bits.
4: There are 4! = 24 ways to permute a sequence of kind (a, b, c, d) . From the first 16 we can generate
4 bits, and from the remaining 8 we can generate 3 bits.
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Advanced Problems

Problem 4: Extremal characterization for Rényi entropy

Given s ≥ 0 , and a random variable U taking values in U , with probabilitis p(u) , consider the distri-
bution ps(u) = p(u)s/Z(s) with Z(s) =

∑
u p(u)s .

(a) Show that for any distribution q on U ,

(1− s)H(q)− sD(q‖p) = −D(q‖ps) + logZ(s).

(b) Given s and p , conclude that the left hand side above is maximized by the choice by q = ps with
the value logZ(s) ,

The quantity

Hs(p) :=
1

1− s
logZ(s) =

1

1− s
log
∑
u

p(u)s

is known as the Rényi entropy of order s of the random variable U . When convenient, we will also write
Hs(U) instead of Hs(p) .

(c) Show that if U and V are independent random variables

Hs(UV ) := Hs(U) +Hs(V ).

[Here UV denotes the pair formed by the two random variables — not their product. E.g., if
U = {0, 1} and V = {a, b} , UV takes values in {0a, 0b, 1a, 1b} .]

Solution 4. (a) We start from the left hand side of the equation:

(1− s)H(q)− sD(q‖p) = (1− s)
∑
u

q(u) log
1

q(u)
− s

∑
u

q(u) log
q(u)

p(u)
(25)

=
∑
u

q(u)

(
(1− s) log

1

q(u)
− s log

q(u)

p(u)

)
(26)

=
∑
u

q(u) log
p(u)s

q(u)
(27)

=
∑
u

q(u) log
ps(u)Z(s)

q(u)
(28)

=
∑
u

q(u) log
ps(u)

q(u)
+
∑
u

q(u) logZ(s) (29)

= −D(q‖ps) + logZ(s) (30)

(b) We know that D(q‖ps) ≥ 0 , where equality achieves for q = ps . The left hand side of above equation
is maximized when q = ps and has value logZ(s) .
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(c) Since U and V are independent random variables, we have p(u, v) = p(u)p(v) .

Hs(UV ) =
1

1− s
log
∑
u,v

p(u, v)s (31)

=
1

1− s
log(

∑
u

p(u)s
∑
v

p(v)s) (32)

=
1

1− s
log
∑
u

p(u)s +
1

1− s
log
∑
v

p(v)s (33)

= Hs(U) +Hs(V ) (34)

Problem 5: KL and its Fenchel-Legendre dual

Consider the Kullback-Leibler divergence D(Q||P ) as a function of Q, for fixed P.

(a) Show that its convex conjugate (sometimes also called Fenchel-Legendre dual) is the logarithm of the
moment-generating function of P. Hint: To keep arguments simple, assume that P is a finite-dimensional
probability mass function, thus P ∈ Rn, and that P (x) > 0 for all x. Recall that the convex conjugate
is the function f∗(Q∗) = supQ〈Q∗, Q〉 −D(Q||P ), where Q∗ ∈ Rn.

(b) Fix P to be a normal distribution of mean zero. Let Q be arbitrary but with the same second
moment as P. Show that in this case, D(Q||P ) = h(P )− h(Q), that is, the difference of the differential
entropy of the normal distribution and the differential entropy of Q.

Solution 5. (a) The Lagrangian is

L(λ,Q) =

(∑
x∈X

Q∗(x)Q(x)

)
−
∑
x∈X

Q(x) log
Q(x)

P (x)
− λ

(∑
x∈X

Q(x)− 1

)
(35)

Taking the derivative with respect to Q(x) gives

d

dQ(x)
L(λ,Q) = Q∗(x)− log

Q(x)

P (x)
− 1− λ (36)

Setting this to zero, we find

Q(x) = P (x)eQ
∗(x)−(1+λ), (37)

where we observe that Q(x) is non-negative (which is good). Next, we have to select λ to make the
Q(x) sum to one, that is

e−(1+λ) =
1∑

x P (x)eQ∗(x)
, (38)

meaning that the optimizing Q(x) is given by

Q(x) =
P (x)eQ

∗(x)∑
x̃ P (x̃)eQ∗(x̃)

. (39)
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Plugging this particular choice of Q(x) back into our main expression, we find

f∗(Q∗) = max
Q

{(∑
x∈X

Q∗(x)Q(x)

)
− f(Q)

}
(40)

=
∑
x∈X

Q∗(x)
P (x)eQ

∗(x)∑
x̃ P (x̃)eQ∗(x̃)

−
∑
x∈X

P (x)eQ
∗(x)∑

x̃ P (x̃)eQ∗(x̃)
log

(
eQ

∗(x)∑
x̃ P (x̃)eQ∗(x̃)

)
(41)

=
∑
x∈X

Q∗(x)
P (x)eQ

∗(x)∑
x̃ P (x̃)eQ∗(x̃)

−
∑
x∈X

P (x)eQ
∗(x)∑

x̃ P (x̃)eQ∗(x̃)
Q∗(x)

+
∑
x∈X

P (x)eQ
∗(x)∑

x̃ P (x̃)eQ∗(x̃)
log

(∑
x̃

P (x̃)eQ
∗(x̃)

)
(42)

= log

(∑
x̃

P (x̃)eQ
∗(x̃)

)
. (43)

This includes the logarithm of the moment-generating function of P as a special case (select Q∗(x) = λx ).

(b) Let X = {x : P (x) > 0}. Then,

D(Q‖P ) =

∫
x∈X

Q(x) log
Q(x)

P (x)
dx (44)

= −h(Q)−
∫
x∈X

Q(x) logP (x)dx (45)

= −h(Q)−
∫
x∈X

Q(x) log

(
1√

2πσ2
e−

x2

2σ2

)
dx (46)

= −h(Q)− log

(
1√

2πσ2

)
+

∫
x∈X

Q(x)
x2

2σ2
dx (47)

= −h(Q) +
1

2
log
(
2πσ2

)
+

EQ[X2]

2σ2
(48)

= −h(Q) +
1

2
log
(
2πσ2

)
+

1

2
(49)

= −h(Q) +
1

2
log
(
2πσ2

)
+

1

2
log e (50)

= −h(Q) +
1

2
log
(
2πeσ2

)
, (51)

where we recognize the second summand to be exactly the differential entropy of the Gaussian distribution
with variance σ2.

Alternatively, since we assume that second moments are equal, we could have observed that

D(Q‖P ) = −h(Q)− log

(
1√

2πσ2

)
+

∫
x∈X

Q(x)
x2

2σ2
dx (52)

= −h(Q)− log

(
1√

2πσ2

)
+

∫
x∈X

P (x)
x2

2σ2
dx (53)

= −h(Q)−
∫
x∈X

P (x) log

(
1√

2πσ2
e−

x2

2σ2

)
dx (54)

= −h(Q)−
∫
x∈X

P (x) logP (x)dx, (55)

where the second summand is precisely the entropy of P (x).
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Problem 6: Moments and Rényi

Suppose G is an integer valued random variable taking values in the set {1, . . . ,K} . Let pi = Pr(G = i) .
We will derive bounds on the moments of G , the ρ -th moment of G being E[Gρ] .

1. Show that for any distribution q on {1, . . . ,K} , and any ρ

E[Gρ] =
∑
i

qi exp
[
log

pii
ρ

qi

]
.

(Here and below exp and log are taken to same base.)

2. Show that
E[Gρ] ≥ exp

[
−D(q‖p) + ρ

∑
i

qi log i
]
.

[Hint: use Jensen’s inequality on Part 1.]

3. Show that ∑
i

qi log i = H(q)−
∑
i

qi log
1

iqi
≥ H(q)− log

K∑
i=1

1/i.

[Hint: use Jensen’s inequality.]

4. Using Part 2, Part 3, and the fact that
∑K
i=1 1/i ≤ 1 + lnK , show that, for ρ ≥ 0 ,

E[Gρ] ≥ (1 + lnK)−ρ exp[ρH(q)−D(q‖p)]

5. Suppose that U1, . . . , Un are i.i.d., each with distribution p . Suppose we try to determine the value
of X = (U1, . . . , Un) by asking a sequence of questions, each of the type ‘Is X = x ?’ until we are
answered ‘yes’. Let Gn be the number of questions we ask.

Show that, for ρ ≥ 0 ,

lim inf
n

1

nρ
logE[Gρn] ≥ H1/(1+ρ)(p)

where Hs(p) = 1
1−s log

∑
u p(u)s is the Rényi entropy of the distribution p .

[Hint: recall from Homework 2 Problem 6 that ρH1/(1+ρ)(p) = maxq ρH(q)−D(q‖p) , and that the
Rényi entropy of a collection of independent random variables is the sum of their Rényi entropies.]

Solution 6. 1. Simplifying the right hand side of the equation, we can get∑
i

qi exp
[
log

pii
ρ

qi

]
=
∑
i

qi
pii

ρ

qi
=
∑
i

pii
ρ = E[Gρ]

2. By Jensen’s inequality and exp(x) is a convex function

E[Gρ] =
∑
i

qi exp
[
log

pii
ρ

qi

]
≥ exp

[∑
i

qi log
pii

ρ

qi

]
= exp

[∑
i

qi log
pi
qi

+ ρ
∑
i

qi log i
]

= exp
[
−D(q‖p) + ρ

∑
i

qi log i
]
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3. ∑
i

qi log i =
∑
i

qi(log
1

qi
− log

1

iqi
)

= H(q)−
∑
i

qi log
1

iqi

≥ H(q)− log
∑
i

1

i

where the last inequality is obtained by apply Jensen’s inequality on concave function log(x) .

4. Using previous results, we have

E[Gρ] ≥ exp
[
−D(q‖p) + ρ

∑
i

qi log i
]

≥ exp
[
−D(q‖p) + ρ(H(q)− log

∑
i

1

i
)
]

= exp
[
ρH(q)−D(q‖p)− ρ log

∑
i

1

i

]
= exp

[
ρH(q)−D(q‖p)− ρ log(1 + lnK)

]
= (1 + lnK)−ρ exp

[
ρH(q)−D(q‖p)

]
5. Since Ui ’s are i.i.d with distribution p , X = (U1, . . . , Un) is the joint distribution pn . If each Ui

has K distinct values, then X has Kn values. Thus, Gn ∈ {1, . . . ,Kn}
Recall from Homework 2 Problem 6 that

max
q
ρH(q)−D(q‖pX) = ρH1/(1+ρ)(pX) = ρ

n∑
i=1

H1/(1+ρ)(pUi) = nρH1/(1+ρ)(p)

Since the result of Part 4 holds for any q , it also holds for the q which maximizes ρH(q)−D(q‖pX) .
Hence, we have

lim inf
n

1

nρ
logE[Gρn] ≥ lim inf

n
max
q

1

nρ
log
(

(1 + lnKn)−ρ exp
[
ρH(q)−D(q‖pX)

])
= lim inf

n

1

nρ
[−ρ log(1 + lnKn) + max

q
ρH(q)−D(q‖pX)]

= lim inf
n
− 1

n
log(1 + n lnK) +H1/(1+ρ)(p)

= H1/(1+ρ)(p)

In the last step, lim infn− 1
n log(1 + n lnK) = 0 .

Problem 7: Other Divergences

Suppose f is a convex function defined on (0,∞) with f(1) = 0 . Define the f -divergence of a distri-
bution p from a distribution q as

Df (p‖q) :=
∑
u

q(u)f(p(u)/q(u)).

In the sum above we take f(0) := limt→0 f(t) , 0f(0/0) := 0 , and 0f(a/0) := limt→0 tf(a/t) =
a limt→0 tf(1/t) .
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(a) Show that for any non-negative a1 , a2 , b1 , b2 and with A = a1 + a2 , B = b1 + b2 ,

b1f(a1/b1) + b2f(a2/b2) ≥ Bf(A/B);

and that in general, for any non-negative a1, . . . , ak , b1, . . . , bk , and A =
∑
i ai , B =

∑
i bi , we

have ∑
i

bif(ai/bi) ≥ Bf(A/B).

[Hint: since f is convex, for any λ ∈ [0, 1] and any x1, x2 > 0 λf(x1) + (1 − λ)f(x2) ≥ f(λx1 +
(1− λ)x2) ; consider λ = b1/B .]

(b) Show that Df (p‖q) ≥ 0 .

(c) Show that Df satisfies the data processing inequality: for any transition probability kernel W (v|u)
from U to V , and any two distributions p and q on U

Df (p‖q) ≥ Df (p̃‖q̃)

where p̃ and q̃ are probability distributions on V defined via p̃(v) :=
∑
uW (v|u)p(u) , and q̃(v) :=∑

uW (v|u)q(u) ,

(d) Show that each of the following are f -divergences.

i. D(p‖q) :=
∑
u p(u) log(p(u)/q(u)) . [Warning: log is not the right choice for f .]

ii. R(p‖q) := D(q‖p) .

iii. 1−
∑
u

√
p(u)q(u)

iv. ‖p− q‖1 .

v.
∑
u(p(u)− q(u))2/q(u)

Solution 7. (a) Since f is convex, for any λ ∈ [0, 1] and any x1, x2 > we have

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2) (56)

By substitution x1 = a1/b1 , x2 = a2/b2 and λ = b1/(b1 + b2) :

b1
b1 + b2

f(
a1
b1

) + (1− b1
b1 + b2

)f(
a2
b2

) ≥ f(
b1

b1 + b2

a1
b1

+ (1− b1
b1 + b2

)
a2
b2

) (57)

⇔ b1f(
a1
b1

) + b2f(
a2
b2

) ≥ Bf(A/B) (58)

Let Ak =
∑k
i=1 ai , Bk =

∑k
i=1 bi . As we have proved that the following inequality holds for k = 1, 2 :

k∑
i=1

bif(ai/bi) ≥ Bkf(Ak/Bk). (59)

We assume that it also holds for k = n . For k = n+ 1 , we have

n+1∑
i=1

bif(ai/bi) =

n∑
i=1

bif(ai/bi) + bn+1f(an+1/bn+1) (60)

≥ Bnf(An/Bn) + bn+1f(an+1/bn+1) (61)

≥ Bn+1f(An+1/Bn+1) (62)

10



By induction, for all any non-negative k , we have

k∑
i=1

bif(ai/bi) ≥ Bkf(Ak/Bk). (63)

(b) Df (p‖q) =
∑
u q(u)f(p(u)/q(u)) ≥ (

∑
u q(u))f(

∑
u p(u)∑
u q(u)

) = 1f(1) = 0 .

(c)

Df (p‖q) =
∑
u

q(u)f(p(u)/q(u)) =
∑
u

∑
v

W (v|u)q(u)f(p(u)/q(u)) (64)

=
∑
u

∑
v

W (v|u)q(u)f(W (v|u)p(u)/(W (v|u)q(u))) (65)

≥
∑
v

(
∑
u

W (v|u)q(u))f

(∑
uW (v|u)p(u)∑
uW (v|u)q(u)

)
(66)

=
∑
v

q̃(v)f(p̃(v)/q̃(v)) (67)

= Df (p̃‖q̃) (68)

(d)

i. D(p‖q) :=
∑
u p(u) log(p(u)/q(u)) =

∑
u q(u)p(u)q(u) log p(u)

q(u) . So f(t) = t log t .

ii. R(p‖q) := D(q‖p) =
∑
u p(u) log(p(u)/q(u)) =

∑
u p(u)(− log(q(u)/p(u))) . So f(t) = − log t .

iii. 1−
∑
u

√
p(u)q(u) =

∑
u q(u)

(
1−

√
p(u)/q(u)

)
. So f(t) = 1−

√
t .

iv. ‖p− q‖1 =
∑
u |p(u)− q(u)| =

∑
u q(u)|p(u)/q(u)− 1| . So f(t) = |t− 1| .

v.
∑
u(p(u)− q(u))2/q(u) =

∑
u q(u)(p(u)/q(u)− 1)2 . So f(t) = (t− 1)2 .
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