Problem Set 2 -Due Friday, October 14, before class starts
For the Exercise Sessions on September 30 and Oct 7

Last name	First name	SCIPER Nr	Points

Problem 1: Entropy and pairwise independence

Suppose X, Y, Z are pairwise independent fair flips, i.e., $I(X ; Y)=I(Y ; Z)=I(Z ; X)=0$.
(a) What is $H(X, Y)$?
(b) Give a lower bound to the value of $H(X, Y, Z)$.
(c) Give an example that achieves this bound.

Solution 1. (a) Since X, Y, Z are pairwise independent fair flips, $H(X)=H(Y)=H(Z)=1$. $H(X, Y)=H(X)+H(Y \mid X)=H(X)+H(Y)-I(X ; Y)=2$.
(b) $H(X, Y, Z)=H(X, Y)+H(Z \mid X, Y) \geq H(X, Y)=2$
(c) Let $Z=X+Y \bmod 2$, then $H(Z \mid X, Y)=0$ and $H(X, Y, Z)=H(X, Y)$.

Problem 2: Divergence and L_{1}
Suppose p and q are two probability mass functions on a finite set \mathcal{U}. (I.e., for all $u \in \mathcal{U}, p(u) \geq 0$ and $\sum_{u \in \mathcal{U}} p(u)=1$; similarly for q.)
(a) Show that the L_{1} distance $\|p-q\|_{1}:=\sum_{u \in \mathcal{U}}|p(u)-q(u)|$ between p and q satisfies

$$
\|p-q\|_{1}=2 \max _{\mathcal{S}: \mathcal{S} \subset \mathcal{U}} p(\mathcal{S})-q(\mathcal{S})
$$

with $p(\mathcal{S})=\sum_{u \in \mathcal{S}} p(u)$ (and similarly for q), and the maximum is taken over all subsets \mathcal{S} of \mathcal{U}.
For α and β in $[0,1]$, define the function $d_{2}(\alpha \| \beta):=\alpha \log \frac{\alpha}{\beta}+(1-\alpha) \log \frac{1-\alpha}{1-\beta}$. Note that $d_{2}(\alpha \| \beta)$ is the divergence of the distribution $(\alpha, 1-\alpha)$ from the distribution $(\beta, 1-\beta)$.
(b) Show that the first and second derivatives of d_{2} with respect to its first argument α satisfy $d_{2}^{\prime}(\beta \| \beta)=0$ and $d_{2}^{\prime \prime}(\alpha \| \beta)=\frac{\log e}{\alpha(1-\alpha)} \geq 4 \log e$.
(c) By Taylor's theorem conclude that

$$
d_{2}(\alpha \| \beta) \geq 2(\log e)(\alpha-\beta)^{2}
$$

(d) Show that for any $\mathcal{S} \subset \mathcal{U}$

$$
D(p \| q) \geq d_{2}(p(\mathcal{S}) \| q(\mathcal{S}))
$$

[Hint: use the data processing theorem for divergence.]
(e) Combine (a), (c) and (d) to conclude that

$$
D(p \| q) \geq \frac{\log e}{2}\|p-q\|_{1}^{2}
$$

(f) Show, by example, that $D(p \| q)$ can be $+\infty$ even when $\|p-q\|_{1}$ is arbitrarily small. [Hint: considering $\mathcal{U}=\{0,1\}$ is sufficient.] Consequently, there is no generally valid inequality that upper bounds $D(p \| q)$ in terms of $\|p-q\|_{1}$.

Solution 2. (a) For any set \mathcal{S}, we have

$$
\begin{equation*}
p(\mathcal{S})-q(\mathcal{S})=\sum_{u \in \mathcal{S}} p(u)-q(u) \leq \sum_{u \in \mathcal{S}}|p(u)-q(u)| \tag{1}
\end{equation*}
$$

Similarly for the compliment set of \mathcal{S}, we also have

$$
\begin{equation*}
q\left(\mathcal{S}^{c}\right)-p\left(\mathcal{S}^{c}\right)=\sum_{u \in \mathcal{S}^{c}} q(u)-p(u) \leq \sum_{u \in \mathcal{S}^{c}}|p(u)-q(u)| \tag{2}
\end{equation*}
$$

Note that $p(\mathcal{S})+p\left(\mathcal{S}^{c}\right)=q(\mathcal{S})+q\left(\mathcal{S}^{c}\right)=1$. Thus $q\left(\mathcal{S}^{c}\right)-p\left(\mathcal{S}^{c}\right)=p(\mathcal{S})-q(\mathcal{S})$. Therefore, we have

$$
\begin{equation*}
2(p(\mathcal{S})-q(\mathcal{S})) \leq \sum_{u \in \mathcal{S}}|p(u)-q(u)|+\sum_{u \in \mathcal{S}^{c}}|p(u)-q(u)|=\sum_{u \in \mathcal{U}}|p(u)-q(u)|=\|p-q\|_{1} \tag{3}
\end{equation*}
$$

For the choice $\mathcal{S}=\{u: p(u)>q(u)\}$, we have

$$
\begin{align*}
p(\mathcal{S})-q(\mathcal{S}) & =\sum_{u \in \mathcal{S}} p(u)-q(u)=\sum_{u \in \mathcal{S}}|p(u)-q(u)| \tag{4}\\
q\left(\mathcal{S}^{c}\right)-p\left(\mathcal{S}^{c}\right) & =\sum_{u \in \mathcal{S}^{c}} q(u)-p(u)=\sum_{u \in \mathcal{S}^{c}}|p(u)-q(u)| \tag{5}
\end{align*}
$$

So, for this \mathcal{S}, we have $2(p(\mathcal{S})-q(\mathcal{S}))=\|p-q\|_{1}$.
(b): Since $d_{2}(\alpha \| \beta)=\alpha \log \frac{\alpha}{\beta}+(1-\alpha) \log \frac{1-\alpha}{1-\beta}$,

$$
\begin{equation*}
d_{2}^{\prime}(\alpha \| \beta)=\frac{\partial d_{2}(\alpha \| \beta)}{\partial \alpha}=\log \frac{\alpha}{\beta}+\log e-\log \frac{1-\alpha}{1-\beta}-\log e=\log \frac{\alpha(1-\beta)}{\beta(1-\alpha)} \tag{6}
\end{equation*}
$$

Therefore, we have $d_{2}^{\prime}(\beta \| \beta)=0$.

$$
\begin{equation*}
d_{2}^{\prime \prime}(\alpha \| \beta)=\frac{\log e}{\alpha(1-\alpha)} \geq 4 \log e \tag{7}
\end{equation*}
$$

where equality achieves when $\alpha=1 / 2$.
(c): Using Taylor's theorem together with the Lagrange form of the remainder we see that for any f for which f^{\prime} is continuous,

$$
\begin{equation*}
f(\alpha)=f(\beta)+(\alpha-\beta) f^{\prime}(\beta)+(1 / 2)(\alpha-\beta)^{2} f^{\prime \prime}\left(x_{i}\right) \tag{8}
\end{equation*}
$$

where x_{i} is a value between α and β. With $f(\alpha)=d_{2}(\alpha \| \beta)$, we thus have

$$
\begin{equation*}
d_{2}(\alpha \| \beta)=0+0+(1 / 2)(\alpha-\beta)^{2} f^{\prime \prime}\left(x_{i}\right) \geq 2 \log (e)(\alpha-\beta)^{2} \tag{9}
\end{equation*}
$$

(d) Consider a deterministic channel with binary output

$$
V= \begin{cases}1, & \text { if } V \in \mathcal{S} \tag{10}\\ 0, & \text { if } V \notin \mathcal{S}\end{cases}
$$

Thus,

$$
\begin{align*}
d_{2}(p(\mathcal{S}) \| q(\mathcal{S})) & =p(\mathcal{S}) \log \frac{p(\mathcal{S})}{q(\mathcal{S})}+(1-p(\mathcal{S})) \log \frac{1-p(\mathcal{S})}{1-q(\mathcal{S})} \tag{11}\\
& =p(V=1) \log \frac{p(V=1)}{q(V=1)}+p(V=0) \log \frac{p(V=0)}{q(V=0)} \tag{12}\\
& =D\left(p_{V} \| q_{V}\right) \tag{13}
\end{align*}
$$

By data processing theorem for divergence, $D(p \| q) \geq D\left(p_{V} \| q_{V}\right)$
(e) Combine (a),(c) and (d) and choosing $\mathcal{S}=\{u: p(u)>q(u)\}$, we have $\forall \mathcal{S}$

$$
\begin{equation*}
D(p \| q) \geq d_{2}(p(\mathcal{S}) \| q(\mathcal{S})) \geq 2(\log e)(p(\mathcal{S})-q(\mathcal{S}))^{2}=\frac{\log e}{2}\|p-q\|_{1}^{2} \tag{14}
\end{equation*}
$$

(f) Let p be Bernoulli distribution with probability ϵ to be 1 and q is 0 with probability 1 . Then

$$
\begin{equation*}
D(p \| q)=p(1) \log \frac{p(1)}{q(1)}+p(0) \log \frac{p(0)}{q(0)}=+\infty \tag{15}
\end{equation*}
$$

But $\|p-q\|_{1}=2 \epsilon$.

Problem 3: Generating fair coin flips from rolling the dice

Suppose X_{1}, X_{2}, \ldots are the outcomes of rolling a possibly loaded die multiple times. The outcomes are assumed to be iid. Let $\mathbb{P}\left(X_{i}=m\right)=p_{m}$, for $m=1,2, \ldots, 6$, with p_{m} unknown (but non-negative and summing to one, clearly). By processing this sequence we would like to obtain a sequence Z_{1}, Z_{2}, \ldots of fair coin flips.

Consider the following method: We process the X sequence in successive pairs, $\left(X_{1} X_{2}\right),\left(X_{3} X_{4}\right)$, $\left(X_{5} X_{6}\right)$, mapping $(3,4)$ to $0,(4,3)$ to 1 , and all the other outcomes to the empty string λ. After processing X_{1}, X_{2}, we will obtain either nothing, or a bit Z_{1}.
(a) Show that, if a bit is obtained, it is fair, i.e., $\mathbb{P}\left(Z_{1}=0 \mid Z_{1} \neq \lambda\right)=\mathbb{P}\left(Z_{1}=1 \mid Z_{1} \neq \lambda\right)=1 / 2$.

In general we can process the X sequence in successive n-tuples via a function $f:\{1,2,3,4,5,6\}^{n} \rightarrow$ $\{0,1\}^{*}$ where $\{0,1\}^{*}$ denotes the set of all finite length binary sequences (including the empty string λ). [The case in (a) is the function where $f(3,4)=0, f(4,3)=1$, and $f(j, m)=\lambda$ for all other choices of j and m.] The function f is chosen such that $\left(Z_{1}, \ldots, Z_{K}\right)=f\left(X_{1}, \ldots, X_{n}\right)$ are i.i.d., and fair (here K may depend on $\left(X_{1}, \ldots, X_{n}\right)$).
(b) Letting $H(X)$ denote the entropy of the (unknown) distribution $\left(p_{1}, p_{2}, \ldots, p_{6}\right)$, prove the following chain of (in)equalities.

$$
\begin{aligned}
n H(X) & =H\left(X_{1}, \ldots, X_{n}\right) \\
& \geq H\left(Z_{1}, \ldots, Z_{K}, K\right) \\
& =H(K)+H\left(Z_{1} \ldots, Z_{K} \mid K\right) \\
& =H(K)+\mathbb{E}[K] \\
& \geq \mathbb{E}[K] .
\end{aligned}
$$

Consequently, on the average no more than $n H(X)$ fair bits can be obtained from (X_{1}, \ldots, X_{n}).
(c) Describe how you would find a good f (with high $\mathbb{E}[K]$) for $n=4$ which would work for any distribution $\left(p_{1}, p_{2}, \ldots, p_{6}\right)$.

Solution 3. (a) $P\left(Z_{1}=0 \mid Z_{1} \neq \lambda\right)=P\left(Z_{1}=0, Z_{1} \neq \lambda\right) / P\left(Z_{1} \neq \lambda\right)=P\left(Z_{1}=0\right) / P\left(Z_{1} \neq \lambda\right)$. Similarly, $P\left(Z_{1}=1 \mid Z_{1} \neq \lambda\right)=P\left(Z_{1}=1\right) / P\left(Z_{1} \neq \lambda\right)$. Let us now show that $P\left(Z_{1}=0\right)=P\left(Z_{1}=1\right)$ and this will complete the proof. Note that $P\left(Z_{1}=1\right)=P\left(X_{1}=3, X_{2}=4\right)=P\left(X_{1}=3\right) P\left(X_{2}=\right.$ 4) $=p_{3} p_{4}$ and $P\left(Z_{1}=0\right)=P\left(X_{1}=4, X_{2}=3\right)=P\left(X_{1}=4\right) P\left(X_{2}=3\right)=p_{4} p_{3}$. Therefore $P\left(Z_{1}=1\right)=P\left(Z_{1}=0\right)$.
(b)

$$
\begin{align*}
n H(X) & =n H\left(X_{i}\right) \tag{16}\\
& \left.=H\left(X_{1}, \ldots, X_{n}\right) \quad \text { [Independence of } X_{i}\right] \tag{17}\\
& \geq H\left(f\left(X_{1}, \ldots, X_{n}\right)\right) \quad \text { [Data Processing Inequality] } \tag{18}\\
& =H\left(Z_{1}, \ldots, Z_{K}, K\right) \tag{19}\\
& =H(K)+H\left(Z_{1}, \ldots, Z_{K} \mid K\right) \quad \text { [Chain Rule] } \tag{20}\\
& =H(K)+\sum_{k} p(K=k) H\left(Z_{1}, \ldots, Z_{K} \mid K=k\right) \tag{21}\\
& =H(K)+\sum_{k} p(K=k) k \quad\left[Z_{1}, \ldots, Z_{k} \text { are i.i.d and fair when } K=k\right] \tag{22}\\
& =H(K)+\mathbb{E}[K] \tag{23}\\
& \geq \mathbb{E}[K] \quad[\text { Non-negativity of entropy] } \tag{24}
\end{align*}
$$

(c)

We have in total 6^{4} many possible outcomes. We can only produce fair bits, regardless of the distribution, if we have permutations of the same sequence. e.g., $1555 \rightarrow 00,5155 \rightarrow 01,5515 \rightarrow 10,5551 \rightarrow 11$. Let us do the counting. A sequence can have $1,2,3$ or 4 kinds of different symbols. An example to a sequence of 3 different symbols is 1232 .

1: We cannot produce bits with 1 kind of different symbols because you cannot permute the sequence and get another sequence. Therefore we map sequences of kind aaaa to the null string λ.
2: For 2 different symbols it will be either 3 of the same kind and 1 of another kind which gives 4 different permutations or 2 of the same kind and 2 of another kind, which gives 6 different permutations. From the 4 different permutations of a " 3 by 1 " (aaab) sequence we can generate 2 fair bits, because there are 4 permutations. From the the first 4 of the 6 different permutations of a " 2 by 2 " sequence (aabb) we can generate 2 fair bits, and from the remaining 2 permutations we can generate 1 fair bit. 3: For 3 different symbols it has to be 2 of the same symbol, 1 of another symbol and 1 of another symbol $(a a b c)$. There are $4!/ 2!=12$ different ways to permute these sequence of type $a a b c$. From the first 8 we can generate 3 bits, and from the remaining 4 we can generate 2 bits.
4: There are $4!=24$ ways to permute a sequence of kind (a, b, c, d). From the first 16 we can generate 4 bits, and from the remaining 8 we can generate 3 bits.

Advanced Problems

Problem 4: Extremal characterization for Rényi entropy

Given $s \geq 0$, and a random variable U taking values in \mathcal{U}, with probabilitis $p(u)$, consider the distribution $p_{s}(u)=p(u)^{s} / Z(s)$ with $Z(s)=\sum_{u} p(u)^{s}$.
(a) Show that for any distribution q on \mathcal{U},

$$
(1-s) H(q)-s D(q \| p)=-D\left(q \| p_{s}\right)+\log Z(s) .
$$

(b) Given s and p, conclude that the left hand side above is maximized by the choice by $q=p_{s}$ with the value $\log Z(s)$,

The quantity

$$
H_{s}(p):=\frac{1}{1-s} \log Z(s)=\frac{1}{1-s} \log \sum_{u} p(u)^{s}
$$

is known as the Rényi entropy of order s of the random variable U. When convenient, we will also write $H_{s}(U)$ instead of $H_{s}(p)$.
(c) Show that if U and V are independent random variables

$$
H_{s}(U V):=H_{s}(U)+H_{s}(V) .
$$

[Here $U V$ denotes the pair formed by the two random variables - not their product. E.g., if $\mathcal{U}=\{0,1\}$ and $\mathcal{V}=\{a, b\}, U V$ takes values in $\{0 a, 0 b, 1 a, 1 b\}$.

Solution 4. (a) We start from the left hand side of the equation:

$$
\begin{align*}
(1-s) H(q)-s D(q \| p) & =(1-s) \sum_{u} q(u) \log \frac{1}{q(u)}-s \sum_{u} q(u) \log \frac{q(u)}{p(u)} \tag{25}\\
& =\sum_{u} q(u)\left((1-s) \log \frac{1}{q(u)}-s \log \frac{q(u)}{p(u)}\right) \tag{26}\\
& =\sum_{u} q(u) \log \frac{p(u)^{s}}{q(u)} \tag{27}\\
& =\sum_{u} q(u) \log \frac{p_{s}(u) Z(s)}{q(u)} \tag{28}\\
& =\sum_{u} q(u) \log \frac{p_{s}(u)}{q(u)}+\sum_{u} q(u) \log Z(s) \tag{29}\\
& =-D\left(q \| p_{s}\right)+\log Z(s) \tag{30}
\end{align*}
$$

(b) We know that $D\left(q \| p_{s}\right) \geq 0$, where equality achieves for $q=p_{s}$. The left hand side of above equation is maximized when $q=p_{s}$ and has value $\log Z(s)$.
(c) Since U and V are independent random variables, we have $p(u, v)=p(u) p(v)$.

$$
\begin{align*}
H_{s}(U V) & =\frac{1}{1-s} \log \sum_{u, v} p(u, v)^{s} \tag{31}\\
& =\frac{1}{1-s} \log \left(\sum_{u} p(u)^{s} \sum_{v} p(v)^{s}\right) \tag{32}\\
& =\frac{1}{1-s} \log \sum_{u} p(u)^{s}+\frac{1}{1-s} \log \sum_{v} p(v)^{s} \tag{33}\\
& =H_{s}(U)+H_{s}(V) \tag{34}
\end{align*}
$$

Problem 5: KL and its Fenchel-Legendre dual

Consider the Kullback-Leibler divergence $D(Q \| P)$ as a function of Q, for fixed P.
(a) Show that its convex conjugate (sometimes also called Fenchel-Legendre dual) is the logarithm of the moment-generating function of P. Hint: To keep arguments simple, assume that P is a finite-dimensional probability mass function, thus $P \in \mathbb{R}^{n}$, and that $P(x)>0$ for all x. Recall that the convex conjugate is the function $f^{*}\left(Q^{*}\right)=\sup _{Q}\left\langle Q^{*}, Q\right\rangle-D(Q \| P)$, where $Q^{*} \in \mathbb{R}^{n}$.
(b) Fix P to be a normal distribution of mean zero. Let Q be arbitrary but with the same second moment as P. Show that in this case, $D(Q \| P)=h(P)-h(Q)$, that is, the difference of the differential entropy of the normal distribution and the differential entropy of Q.

Solution 5. (a) The Lagrangian is

$$
\begin{equation*}
L(\lambda, Q)=\left(\sum_{x \in \mathcal{X}} Q^{*}(x) Q(x)\right)-\sum_{x \in \mathcal{X}} Q(x) \log \frac{Q(x)}{P(x)}-\lambda\left(\sum_{x \in \mathcal{X}} Q(x)-1\right) \tag{35}
\end{equation*}
$$

Taking the derivative with respect to $Q(x)$ gives

$$
\begin{equation*}
\frac{d}{d Q(x)} L(\lambda, Q)=Q^{*}(x)-\log \frac{Q(x)}{P(x)}-1-\lambda \tag{36}
\end{equation*}
$$

Setting this to zero, we find

$$
\begin{equation*}
Q(x)=P(x) e^{Q^{*}(x)-(1+\lambda)}, \tag{37}
\end{equation*}
$$

where we observe that $Q(x)$ is non-negative (which is good). Next, we have to select λ to make the $Q(x)$ sum to one, that is

$$
\begin{equation*}
e^{-(1+\lambda)}=\frac{1}{\sum_{x} P(x) e^{Q^{*}(x)}} \tag{38}
\end{equation*}
$$

meaning that the optimizing $Q(x)$ is given by

$$
\begin{equation*}
Q(x)=\frac{P(x) e^{Q^{*}(x)}}{\sum_{\tilde{x}} P(\tilde{x}) e^{Q^{*}(\tilde{x})}} \tag{39}
\end{equation*}
$$

Plugging this particular choice of $Q(x)$ back into our main expression, we find

$$
\begin{align*}
f^{*}\left(Q^{*}\right)= & \max _{Q}\left\{\left(\sum_{x \in \mathcal{X}} Q^{*}(x) Q(x)\right)-f(Q)\right\} \tag{40}\\
= & \sum_{x \in \mathcal{X}} Q^{*}(x) \frac{P(x) e^{Q^{*}(x)}}{\sum_{\tilde{x}} P(\tilde{x}) e^{*^{*}(\tilde{x})}}-\sum_{x \in \mathcal{X}} \frac{P(x) e^{Q^{*}(x)}}{\sum_{\tilde{x}} P(\tilde{x}) e^{Q^{*}(\tilde{x})}} \log \left(\frac{e^{Q^{*}(x)}}{\sum_{\tilde{x}} P(\tilde{x}) e^{Q^{*}(\tilde{x})}}\right) \tag{41}\\
= & \sum_{x \in \mathcal{X}} Q^{*}(x) \frac{P(x) e^{Q^{*}(x)}}{\sum_{\tilde{x}} P(\tilde{x}) e^{Q^{*}(\tilde{x})}}-\sum_{x \in \mathcal{X}} \frac{P(x) e^{Q^{*}(x)}}{\sum_{\tilde{x}} P(\tilde{x}) e^{Q^{*}(\tilde{x})}} Q^{*}(x) \\
& +\sum_{x \in \mathcal{X}} \frac{P(x) e^{Q^{*}(x)}}{\sum_{\tilde{x}} P(\tilde{x}) e^{Q^{*}(\tilde{x})}} \log \left(\sum_{\tilde{x}} P(\tilde{x}) e^{Q^{*}(\tilde{x})}\right) \tag{42}\\
= & \log \left(\sum_{\tilde{x}} P(\tilde{x}) e^{Q^{*}(\tilde{x})}\right) . \tag{43}
\end{align*}
$$

This includes the logarithm of the moment-generating function of P as a special case (select $Q^{*}(x)=\lambda x$). (b) Let $\mathcal{X}=\{x: P(x)>0\}$. Then,

$$
\begin{align*}
D(Q \| P) & =\int_{x \in \mathcal{X}} Q(x) \log \frac{Q(x)}{P(x)} d x \tag{44}\\
& =-h(Q)-\int_{x \in \mathcal{X}} Q(x) \log P(x) d x \tag{45}\\
& =-h(Q)-\int_{x \in \mathcal{X}} Q(x) \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}\right) d x \tag{46}\\
& =-h(Q)-\log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)+\int_{x \in \mathcal{X}} Q(x) \frac{x^{2}}{2 \sigma^{2}} d x \tag{47}\\
& =-h(Q)+\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{\mathbb{E}_{Q}\left[X^{2}\right]}{2 \sigma^{2}} \tag{48}\\
& =-h(Q)+\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2} \tag{49}\\
& =-h(Q)+\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2} \log e \tag{50}\\
& =-h(Q)+\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right), \tag{51}
\end{align*}
$$

where we recognize the second summand to be exactly the differential entropy of the Gaussian distribution with variance σ^{2}.
Alternatively, since we assume that second moments are equal, we could have observed that

$$
\begin{align*}
D(Q \| P) & =-h(Q)-\log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)+\int_{x \in \mathcal{X}} Q(x) \frac{x^{2}}{2 \sigma^{2}} d x \tag{52}\\
& =-h(Q)-\log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)+\int_{x \in \mathcal{X}} P(x) \frac{x^{2}}{2 \sigma^{2}} d x \tag{53}\\
& =-h(Q)-\int_{x \in \mathcal{X}} P(x) \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}\right) d x \tag{54}\\
& =-h(Q)-\int_{x \in \mathcal{X}} P(x) \log P(x) d x, \tag{55}
\end{align*}
$$

where the second summand is precisely the entropy of $P(x)$.

Problem 6: Moments and Rényi

Suppose G is an integer valued random variable taking values in the set $\{1, \ldots, K\}$. Let $p_{i}=\operatorname{Pr}(G=i)$. We will derive bounds on the moments of G, the ρ-th moment of G being $\mathbb{E}\left[G^{\rho}\right]$.

1. Show that for any distribution q on $\{1, \ldots, K\}$, and any ρ

$$
\mathbb{E}\left[G^{\rho}\right]=\sum_{i} q_{i} \exp \left[\log \frac{p_{i} i^{\rho}}{q_{i}}\right]
$$

(Here and below exp and log are taken to same base.)
2. Show that

$$
\mathbb{E}\left[G^{\rho}\right] \geq \exp \left[-D(q \| p)+\rho \sum_{i} q_{i} \log i\right]
$$

[Hint: use Jensen's inequality on Part 1.]
3. Show that

$$
\sum_{i} q_{i} \log i=H(q)-\sum_{i} q_{i} \log \frac{1}{i q_{i}} \geq H(q)-\log \sum_{i=1}^{K} 1 / i
$$

[Hint: use Jensen's inequality.]
4. Using Part 2, Part 3, and the fact that $\sum_{i=1}^{K} 1 / i \leq 1+\ln K$, show that, for $\rho \geq 0$,

$$
\mathbb{E}\left[G^{\rho}\right] \geq(1+\ln K)^{-\rho} \exp [\rho H(q)-D(q \| p)]
$$

5. Suppose that U_{1}, \ldots, U_{n} are i.i.d., each with distribution p. Suppose we try to determine the value of $X=\left(U_{1}, \ldots, U_{n}\right)$ by asking a sequence of questions, each of the type 'Is $X=x$?' until we are answered 'yes'. Let G_{n} be the number of questions we ask.
Show that, for $\rho \geq 0$,

$$
\liminf _{n} \frac{1}{n \rho} \log \mathbb{E}\left[G_{n}^{\rho}\right] \geq H_{1 /(1+\rho)}(p)
$$

where $H_{s}(p)=\frac{1}{1-s} \log \sum_{u} p(u)^{s}$ is the Rényi entropy of the distribution p.
[Hint: recall from Homework 2 Problem 6 that $\rho H_{1 /(1+\rho)}(p)=\max _{q} \rho H(q)-D(q \| p)$, and that the Rényi entropy of a collection of independent random variables is the sum of their Rényi entropies.]

Solution 6. 1. Simplifying the right hand side of the equation, we can get

$$
\sum_{i} q_{i} \exp \left[\log \frac{p_{i} i^{\rho}}{q_{i}}\right]=\sum_{i} q_{i} \frac{p_{i} i^{\rho}}{q_{i}}=\sum_{i} p_{i} i^{\rho}=\mathbb{E}\left[G^{\rho}\right]
$$

2. By Jensen's inequality and $\exp (x)$ is a convex function

$$
\begin{aligned}
\mathbb{E}\left[G^{\rho}\right]=\sum_{i} q_{i} \exp \left[\log \frac{p_{i} i^{\rho}}{q_{i}}\right] & \geq \exp \left[\sum_{i} q_{i} \log \frac{p_{i} i^{\rho}}{q_{i}}\right] \\
& =\exp \left[\sum_{i} q_{i} \log \frac{p_{i}}{q_{i}}+\rho \sum_{i} q_{i} \log i\right] \\
& =\exp \left[-D(q \| p)+\rho \sum_{i} q_{i} \log i\right]
\end{aligned}
$$

3.

$$
\begin{aligned}
\sum_{i} q_{i} \log i & =\sum_{i} q_{i}\left(\log \frac{1}{q_{i}}-\log \frac{1}{i q_{i}}\right) \\
& =H(q)-\sum_{i} q_{i} \log \frac{1}{i q_{i}} \\
& \geq H(q)-\log \sum_{i} \frac{1}{i}
\end{aligned}
$$

where the last inequality is obtained by apply Jensen's inequality on concave function $\log (x)$.
4. Using previous results, we have

$$
\begin{aligned}
\mathbb{E}\left[G^{\rho}\right] & \geq \exp \left[-D(q \| p)+\rho \sum_{i} q_{i} \log i\right] \\
& \geq \exp \left[-D(q \| p)+\rho\left(H(q)-\log \sum_{i} \frac{1}{i}\right)\right] \\
& =\exp \left[\rho H(q)-D(q \| p)-\rho \log \sum_{i} \frac{1}{i}\right] \\
& =\exp [\rho H(q)-D(q \| p)-\rho \log (1+\ln K)] \\
& =(1+\ln K)^{-\rho} \exp [\rho H(q)-D(q \| p)]
\end{aligned}
$$

5. Since U_{i} 's are i.i.d with distribution $p, X=\left(U_{1}, \ldots, U_{n}\right)$ is the joint distribution p^{n}. If each U_{i} has K distinct values, then X has K^{n} values. Thus, $G_{n} \in\left\{1, \ldots, K^{n}\right\}$
Recall from Homework 2 Problem 6 that

$$
\max _{q} \rho H(q)-D\left(q \| p_{X}\right)=\rho H_{1 /(1+\rho)}\left(p_{X}\right)=\rho \sum_{i=1}^{n} H_{1 /(1+\rho)}\left(p_{U_{i}}\right)=n \rho H_{1 /(1+\rho)}(p)
$$

Since the result of Part 4 holds for any q, it also holds for the q which maximizes $\rho H(q)-D\left(q \| p_{X}\right)$. Hence, we have

$$
\begin{aligned}
\liminf _{n} \frac{1}{n \rho} \log \mathbb{E}\left[G_{n}^{\rho}\right] & \geq \liminf _{n} \max _{q} \frac{1}{n \rho} \log \left(\left(1+\ln K^{n}\right)^{-\rho} \exp \left[\rho H(q)-D\left(q \| p_{X}\right)\right]\right) \\
& =\liminf _{n} \frac{1}{n \rho}\left[-\rho \log \left(1+\ln K^{n}\right)+\max _{q} \rho H(q)-D\left(q \| p_{X}\right)\right] \\
& =\liminf _{n}-\frac{1}{n} \log (1+n \ln K)+H_{1 /(1+\rho)}(p) \\
& =H_{1 /(1+\rho)}(p)
\end{aligned}
$$

In the last step, $\liminf _{n}-\frac{1}{n} \log (1+n \ln K)=0$.

Problem 7: Other Divergences

Suppose f is a convex function defined on $(0, \infty)$ with $f(1)=0$. Define the f-divergence of a distribution p from a distribution q as

$$
D_{f}(p \| q):=\sum_{u} q(u) f(p(u) / q(u))
$$

In the sum above we take $f(0):=\lim _{t \rightarrow 0} f(t), 0 f(0 / 0):=0$, and $0 f(a / 0):=\lim _{t \rightarrow 0} t f(a / t)=$ $a \lim _{t \rightarrow 0} t f(1 / t)$.
(a) Show that for any non-negative $a_{1}, a_{2}, b_{1}, b_{2}$ and with $A=a_{1}+a_{2}, B=b_{1}+b_{2}$,

$$
b_{1} f\left(a_{1} / b_{1}\right)+b_{2} f\left(a_{2} / b_{2}\right) \geq B f(A / B) ;
$$

and that in general, for any non-negative $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$, and $A=\sum_{i} a_{i}, B=\sum_{i} b_{i}$, we have

$$
\sum_{i} b_{i} f\left(a_{i} / b_{i}\right) \geq B f(A / B)
$$

[Hint: since f is convex, for any $\lambda \in[0,1]$ and any $x_{1}, x_{2}>0 \quad \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geq f\left(\lambda x_{1}+\right.$ $\left.(1-\lambda) x_{2}\right)$; consider $\left.\lambda=b_{1} / B.\right]$
(b) Show that $D_{f}(p \| q) \geq 0$.
(c) Show that D_{f} satisfies the data processing inequality: for any transition probability kernel $W(v \mid u)$ from \mathcal{U} to \mathcal{V}, and any two distributions p and q on \mathcal{U}

$$
D_{f}(p \| q) \geq D_{f}(\tilde{p} \| \tilde{q})
$$

where \tilde{p} and \tilde{q} are probability distributions on \mathcal{V} defined via $\tilde{p}(v):=\sum_{u} W(v \mid u) p(u)$, and $\tilde{q}(v):=$ $\sum_{u} W(v \mid u) q(u)$,
(d) Show that each of the following are f-divergences.
i. $D(p \| q):=\sum_{u} p(u) \log (p(u) / q(u))$. [Warning: log is not the right choice for f.]
ii. $R(p \| q):=D(q \| p)$.
iii. $1-\sum_{u} \sqrt{p(u) q(u)}$
iv. $\|p-q\|_{1}$.
v. $\sum_{u}(p(u)-q(u))^{2} / q(u)$

Solution 7. (a) Since f is convex, for any $\lambda \in[0,1]$ and any $x_{1}, x_{2}>$ we have

$$
\begin{equation*}
\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geq f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \tag{56}
\end{equation*}
$$

By substitution $x_{1}=a_{1} / b_{1}, x_{2}=a_{2} / b_{2}$ and $\lambda=b_{1} /\left(b_{1}+b_{2}\right)$:

$$
\begin{align*}
\frac{b_{1}}{b_{1}+b_{2}} f\left(\frac{a_{1}}{b_{1}}\right)+\left(1-\frac{b_{1}}{b_{1}+b_{2}}\right) f\left(\frac{a_{2}}{b_{2}}\right) & \geq f\left(\frac{b_{1}}{b_{1}+b_{2}} \frac{a_{1}}{b_{1}}+\left(1-\frac{b_{1}}{b_{1}+b_{2}}\right) \frac{a_{2}}{b_{2}}\right) \tag{57}\\
& \Leftrightarrow b_{1} f\left(\frac{a_{1}}{b_{1}}\right)+b_{2} f\left(\frac{a_{2}}{b_{2}}\right) \tag{58}
\end{align*}
$$

Let $A_{k}=\sum_{i=1}^{k} a_{i}, B_{k}=\sum_{i=1}^{k} b_{i}$. As we have proved that the following inequality holds for $k=1,2$:

$$
\begin{equation*}
\sum_{i=1}^{k} b_{i} f\left(a_{i} / b_{i}\right) \geq B_{k} f\left(A_{k} / B_{k}\right) \tag{59}
\end{equation*}
$$

We assume that it also holds for $k=n$. For $k=n+1$, we have

$$
\begin{align*}
\sum_{i=1}^{n+1} b_{i} f\left(a_{i} / b_{i}\right) & =\sum_{i=1}^{n} b_{i} f\left(a_{i} / b_{i}\right)+b_{n+1} f\left(a_{n+1} / b_{n+1}\right) \tag{60}\\
& \geq B_{n} f\left(A_{n} / B_{n}\right)+b_{n+1} f\left(a_{n+1} / b_{n+1}\right) \tag{61}\\
& \geq B_{n+1} f\left(A_{n+1} / B_{n+1}\right) \tag{62}
\end{align*}
$$

By induction, for all any non-negative k, we have

$$
\begin{equation*}
\sum_{i=1}^{k} b_{i} f\left(a_{i} / b_{i}\right) \geq B_{k} f\left(A_{k} / B_{k}\right) \tag{63}
\end{equation*}
$$

(b) $D_{f}(p \| q)=\sum_{u} q(u) f(p(u) / q(u)) \geq\left(\sum_{u} q(u)\right) f\left(\frac{\sum_{u} p(u)}{\sum_{u} q(u)}\right)=1 f(1)=0$.
(c)

$$
\begin{align*}
D_{f}(p \| q)=\sum_{u} q(u) f(p(u) / q(u)) & =\sum_{u} \sum_{v} W(v \mid u) q(u) f(p(u) / q(u)) \tag{64}\\
& =\sum_{u} \sum_{v} W(v \mid u) q(u) f(W(v \mid u) p(u) /(W(v \mid u) q(u))) \tag{65}\\
& \geq \sum_{v}\left(\sum_{u} W(v \mid u) q(u)\right) f\left(\frac{\sum_{u} W(v \mid u) p(u)}{\sum_{u} W(v \mid u) q(u)}\right) \tag{66}\\
& =\sum_{v} \tilde{q}(v) f(\tilde{p}(v) / \tilde{q}(v)) \tag{67}\\
& =D_{f}(\tilde{p} \| \tilde{q}) \tag{68}
\end{align*}
$$

(d)
i. $D(p \| q):=\sum_{u} p(u) \log (p(u) / q(u))=\sum_{u} q(u) \frac{p(u)}{q(u)} \log \frac{p(u)}{q(u)}$. So $f(t)=t \log t$.
ii. $R(p \| q):=D(q \| p)=\sum_{u} p(u) \log (p(u) / q(u))=\sum_{u} p(u)(-\log (q(u) / p(u)))$. So $f(t)=-\log t$.
iii. $1-\sum_{u} \sqrt{p(u) q(u)}=\sum_{u} q(u)(1-\sqrt{p(u) / q(u)})$. So $f(t)=1-\sqrt{t}$.
iv. $\|p-q\|_{1}=\sum_{u}|p(u)-q(u)|=\sum_{u} q(u)|p(u) / q(u)-1|$. So $f(t)=|t-1|$.
v. $\sum_{u}(p(u)-q(u))^{2} / q(u)=\sum_{u} q(u)(p(u) / q(u)-1)^{2}$. So $f(t)=(t-1)^{2}$.

