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Exercise 2.1 (Manifolds from vector spaces). Let V be a vector space and |·| : V → R
a norm. Then V is endowed with a distance function and thus has the structure of

a topological space. Let E1, . . . , En be a basis for V , then E : Rn → V defined by

(x1, . . . , xn)→
∑

i xiEi.

(a) Show that (V,E−1) is a chart for V ;

Solution. We recall the following fact from analysis: Any two norms N0, N1

on Rn are equivalent. That is, there exist numbers α, β > 0 such that

N0(x) ≤ αN1(v) and N1(x) ≤ βN0(v) for all v ∈ Rn. (A proof of this can be

found e.g. in https://math.stackexchange.com/q/2890032.) This fact implies

that the two topologies induced by the two distances di(x, y) = Ni(y, x) (for

i = 0, 1) coincide.

Now, let us solve the exercise. On the space V we define the distance

function d(x, y) = ‖y − x‖, which gives the topology to V , and on the space

Rn we define the distance function d′(x′, y′) = d(E(x′), E(y′)), so that the

map E : (Rn, d′) → (V, d) is an isometry, hence an homeomorphism. More

precisely, E−1 is a homeomorphism from V (which is clearly an open subset of

V ) to Rn (which is an open subset of Rn). We conclude that the pair (V,E−1)

is a chart of V . �

(b) Show that given a different base Ẽ1, . . . , Ẽn, the charts (V,E−1), (V, Ẽ−1) of

V are smoothly compatible. We say that the collection of charts of this form

define the standard smooth structure on V .

Solution. Each of the charts E−1, Ẽ−1 is a linear isomorphism, therefore the

transition map τ = E−1 ◦ Ẽ−1 : Rn → Rn is a linear isomorphism as well.

(Note that in this case it is was easy to compute the domain and image of the

transition map because both charts E−1, Ẽ−1 are defined on the whole space

V .)

Since τ : Rn → Rn is a linear isomorphism, there exists an invertible matrix

A such that τ(v) = Av and τ−1v = A−1v for all v. We conclude that τ is

a smooth function with smooth inverse, therefore the charts E−1, Ẽ−1 are

smoothly compatible. �

Use the previous part of the exercise to show that:

(a) The space M(n × m,R) of n × m matrices has a natural smooth manifold

structure

Solution. This space is a vector space of dimension n·m, hence it has a natural

smooth structure by the first part of the exercise. �

(b) The general linear group Gl(n,R) has a natural smooth manifold structure

Solution. The set GL(n,R) is an open subset of M(n,R) therefore it is nat-

urally a smooth manifold. �

(c) Let V,W two vector spaces and L(V ;W ) the space of linear maps from V to

W has a natural smooth manifold structure.

Solution. The space of linear maps L(V ;W ) is a vector space, hence it has a

natural smooth structure. �

Exercise 2.2 (Stereographic projection.). Let N = (0, . . . , 0, 1) ∈ Rn+1 be the north

pole and S = −N the south pole of the sphere Sn. Define stereographic projection
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σ : Sn \ {N} → Rn by

σ(x0, . . . , xn) =
1

1− xn
(x0, . . . , xn−1).

Let σ̃(x) = σ(−x) for x ∈ Sn \ {S}.

(a) Show that σ is bijective, and

σ−1(u0, . . . , un−1) =
1

|u|2 + 1
(2u0, . . . , 2un−1, |u|2 − 1).

Solution. To show that σ is bijective and σ−1 is its inverse, it is sufficient to

verify that

σ−1 ◦ σ = id,

σ ◦ σ−1 = id .

Let us show first how one could find the formulas for σ and σ−1. We use

the following notation: if u ∈ Rn and a ∈ R, we denote (u, a) the point of

Rn+1 whose first n coordinates are the ui’s and whose last coordinate is a.

Thus the hyperplane Π = Rn × {0} ≡ Rn contains the points of the form

(u, 0).

Every non-horizontal line r containing the point N intersects the sphere Sn
at one point x (other than N) and intersects the plane Π at a point (u, 0).

We want the formulas for the maps σ : x 7→ u and σ−1 : u 7→ x. If we know

x, then r is the image of the map

t ∈ R 7→ N + t(x−N) = (tx0, . . . , txn−1, 1 + t(xn − 1))

The intersection with the plane Π occurs when the last coordinate is 0, that

is, when t = 1
1−xn . The point of intersection is (u, 0), where

u = (tx0, . . . , txn−1) =
1

1− xn
(x0, . . . , xn−1).

This gives the formula for σ.

To compute σ−1 suppose we know the point u. Then r is the image of the

map

t ∈ R 7→ N + t((u, 0)−N)) = (tu0, . . . , tun, 1− t)

This point is contained in Sn if and only if t2|u|2+(1−t)2 = 1. We rewrite the

equation as (|u|2 + 1)t2 − 2t = 0 and find the solutions t = 0 (corresponding

to the north pole) and t = 2
|u|2+1

, corresponding to the point

x =
1

|u|2 + 1
(2u0, . . . , 2un−1, |u|2 − 1).

This gives the formula for σ−1. �

(b) Verify that {σ, σ̃} is a smooth atlas for Sn.

Solution. The domains of σ and σ̃ cover Sn. The transition map σ̃ ◦ σ−1,
defined on Rn \ {0} by the formula

σ̃ ◦ σ−1(u) = σ

(
−2u0, . . . , 2un−1, |u|2 − 1

|u|2 + 1

)
= −(u0, . . . , un−1)

|u|2
,

is smooth. �

(c) Show that the smooth structure defined by the atlas {σ, σ̃} is the same as the

one defined via graph coordinates in the lecture.
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Solution. It suffices to show that each chart in {σ, σ̃} is compatible with all

the graph charts φ±i . The transition function is given by the formula

φ+i ◦ σ
−1(y) = φ+i

(
2y0, . . . , 2yn−1, |y|2 − 1

|y|2 + 1

)
=

(
2y0, . . . , 2yi−1, 2yi+1, . . . , 2yn−1, |y|2 − 1

|y|2 + 1

)
and is therefore a smooth map. The inverse map σ ◦ (φ+i )−1 is defined on

σ−1(Sn ∩ U+
i ) and is [...] �

Exercise 2.3. Let N be an open subset of a smooth n-manifold (M,A), endowed

with the smooth structure described in Exercise 1.4. Prove that:

(a) The inclusion map ι : N ↪→M is a smooth map of manifolds.

Solution. We just need to check that the local expressions of ι are Ck. These

local expressions are of the form

ιϕψ = ϕ ◦ ι ◦ ψ−1 = ϕ ◦ ψ−1

with ϕ ∈ B and ψ ∈ A. Now, both charts ϕ,ψ belong to A since B ⊆ A.

Therefore the map ϕ ◦ ψ−1 is a transition map of A, therefore it is Ck. �

(b) A function f : L → N from a smooth manifold l is smooth f and only if the

composite ι ◦ f is smooth.

Solution. If f is Ck, the composite ι ◦ f is Ck because ι is Ck. Reciprocally,

suppose ι is Ck. Then f is Ck, because any local expression fψξ (with ξ a chart

of L and ψ ∈ B) is also a local expression of ι ◦ f . Indeed,

fψξ = ψ ◦ f ◦ ξ−1 = ψ ◦ ι ◦ f ◦ ξ−1.

�

Exercise 2.4 (Properties of manifolds). Show that:

(a) Let A,A′ be smooth atlases on a topological manifold M . Then A and A′
determine the same smooth structure on M if and only if their union is a

smooth atlas.

Solution. Let Ā denote the maximal atlas determined by A: the set of all

charts that are smoothly compatible with every chart in A. We have to show

that Ā = Ā′ if and only if A ∪ A′ is an atlas. We can define the equivalence

relation between charts φ ∼ ψ iff φ is smoothly compatible with ψ. Then the

argument follow from the transitivity property of the smoothly compatible

relationship. If A ∪ A′ is an atlas then, φ ∼ ψ for every (U, φ) ∈ A and

(V, ψ) ∈ A′, This implies Ā = Ā′. Conversely, Ā = Ā′ implies that for ξ ∈ Ā,

ξ ∼ φ for every (U, φ) ∈ A then ξ ∼ ψ for every (V, ψ) ∈ A′. Therefore, φ ∼ ψ
for every (U, φ) ∈ A and (V, ψ) ∈ A′. So A ∪A′ is an atlas. �

Solution. We know that φ : U → φ(U) is an homeomorphism. Moreover φ is a

smooth map iff the composition idRn ◦φ◦φ−1 is smooth. Since idRn ◦φ◦φ−1 =

idRn is a smooth map so φ is a smooth map. One can show that φ−1 is smooth

as well by a similar argument. �

Solution. Let f : M → N and g : N → P be smooth maps. Then by

definitions the maps φ ◦ f ◦ ψ−1 and ψ ◦ g ◦ ξ−1 are smooth for every smooth

local chart φ, ψ, and ξ on M , N , and P respectively. Then the composition

h = f ◦ g is smooth since the function

φ ◦ h ◦ ξ−1 = φ ◦ f ◦ g ◦ ξ−1 = φ ◦ f ◦ ψ−1 ◦ ψ ◦ g ◦ ξ−1

is smooth for every local chart. �
3



Introduction to Differentiable Manifolds Solutions Series 2

(b) Two smooth atlases A1,A2 on M are equivalent iff the following holds:

For every function f : N →M (where N is a smooth manifold), the function

f is smooth as a map N →M0 if and only if it is Ck as a map N →M1.

Solution. (⇒) is clear. Let us prove prove (⇐). Thus assuming the last

property holds, let us show that the atlases A0, A1 are equivalent. For this,

it suffices to prove the following:

Claim: For every ϕ ∈ A0, ψ ∈ A1 the transition maps ψ ◦ϕ−1 and ϕ ◦ψ−1
are Ck.

Proof of claim: The function ϕ is a Ck isomorphism U → V , where U ⊆M0

and V ⊆ Rn are open sets. Therefore its inverse ϕ−1 : V → M0 is Ck. Then,

by the hypothesis (applied to f = ϕ−1), ϕ−1 : V → M1 is Ck. Therefore

ψ ◦ϕ−1 is Ck for each ψ ∈ A1, as claimed. An analogous argument shows that

ϕ ◦ ψ−1 is Ck. �

Exercise 2.5 (to hand in). Prove the following

(a) Let c : M → N the constant map between two smooth manifolds; c is smooth

(b) Every smooth chart ϕ : U → ϕ(U) of M is a diffeomorphism; here U and

ϕ(U) are given the open subspace smooth structure defined in Exercise 1.4.

(c) The composite g ◦ f of two smooth maps f : M → N , g : N → P is smooth

map.

(d) Show that the quotient map π : Rn+1\0→ RPn is a smooth map of manifolds

where on RPn we considered the smooth structure defined in Exercise 1.7.

Exercise 2.6. On the real line R (with the standard topology) we define two atlases

A = {idR}, B = {ϕ}, where ϕ : R→ R is given by ϕ(x) = x3.

(a) Find a smooth diffeomorphism (R,A)→ (R,B).

Solution. The homeomorphism f : (R,A)→ (R,B) defined by f(x) = x3 is a

diffeomorphism since the local expressions

fϕidR = idR ◦f ◦ ϕ−1 = idR

and

f−1|idRϕ = ϕ ◦ f−1 ◦ idR = idR

are smooth. �
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