Introduction to Differentiable Manifolds	
EPFL – Fall 2022 F. Ca	arocci, M. Cossarini
Solutions Series 2 - Differentiable manifolds and maps	2021 - 10 - 11

Exercise 2.1 (Manifolds from vector spaces). Let V be a vector space and $|\cdot|: V \to \mathbb{R}$ a norm. Then V is endowed with a distance function and thus has the structure of a topological space. Let E_1, \ldots, E_n be a basis for V, then $E: \mathbb{R}^n \to V$ defined by $(x_1, \ldots, x_n) \to \sum_i x_i E_i$.

(a) Show that (V, E^{-1}) is a chart for V;

Solution. We recall the following fact from analysis: Any two norms N_0 , N_1 on \mathbb{R}^n are equivalent. That is, there exist numbers α , $\beta > 0$ such that $N_0(x) \leq \alpha N_1(v)$ and $N_1(x) \leq \beta N_0(v)$ for all $v \in \mathbb{R}^n$. (A proof of this can be found e.g. in https://math.stackexchange.com/q/2890032.) This fact implies that the two topologies induced by the two distances $d_i(x, y) = N_i(y, x)$ (for i = 0, 1) coincide.

Now, let us solve the exercise. On the space V we define the distance function d(x, y) = ||y - x||, which gives the topology to V, and on the space \mathbb{R}^n we define the distance function d'(x', y') = d(E(x'), E(y')), so that the map $E : (\mathbb{R}^n, d') \to (V, d)$ is an isometry, hence an homeomorphism. More precisely, E^{-1} is a homeomorphism from V (which is clearly an open subset of V) to \mathbb{R}^n (which is an open subset of \mathbb{R}^n). We conclude that the pair (V, E^{-1}) is a chart of V.

(b) Show that given a different base $\tilde{E}_1, \ldots, \tilde{E}_n$, the charts (V, E^{-1}) , (V, \tilde{E}^{-1}) of V are smoothly compatible. We say that the collection of charts of this form define the *standard smooth structure* on V.

Solution. Each of the charts E^{-1} , \tilde{E}^{-1} is a linear isomorphism, therefore the transition map $\tau = E^{-1} \circ \tilde{E}^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ is a linear isomorphism as well. (Note that in this case it is was easy to compute the domain and image of the transition map because both charts E^{-1} , \tilde{E}^{-1} are defined on the whole space V.)

Since $\tau : \mathbb{R}^n \to \mathbb{R}^n$ is a linear isomorphism, there exists an invertible matrix A such that $\tau(v) = Av$ and $\tau^{-1}v = A^{-1}v$ for all v. We conclude that τ is a smooth function with smooth inverse, therefore the charts E^{-1} , \tilde{E}^{-1} are smoothly compatible.

Use the previous part of the exercise to show that:

(a) The space $M(n \times m, \mathbb{R})$ of $n \times m$ matrices has a natural smooth manifold structure

Solution. This space is a vector space of dimension $n \cdot m$, hence it has a natural smooth structure by the first part of the exercise.

- (b) The general linear group $Gl(n, \mathbb{R})$ has a natural smooth manifold structure *Solution*. The set $GL(n, \mathbb{R})$ is an open subset of $M(n, \mathbb{R})$ therefore it is naturally a smooth manifold.
- (c) Let V, W two vector spaces and L(V; W) the space of linear maps from V to W has a natural smooth manifold structure.

Solution. The space of linear maps L(V; W) is a vector space, hence it has a natural smooth structure.

Exercise 2.2 (Stereographic projection.). Let $N = (0, ..., 0, 1) \in \mathbb{R}^{n+1}$ be the *north* pole and S = -N the *south* pole of the sphere \mathbb{S}^n . Define stereographic projection

 $\sigma: \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$ by

$$\sigma(x_0, \dots, x_n) = \frac{1}{1 - x_n} (x_0, \dots, x_{n-1}).$$

Let $\widetilde{\sigma}(x) = \sigma(-x)$ for $x \in \mathbb{S}^n \setminus \{S\}$.

(a) Show that σ is bijective, and

$$\sigma^{-1}(u_0,\ldots,u_{n-1}) = \frac{1}{|u|^2 + 1} (2u_0,\ldots,2u_{n-1},|u|^2 - 1).$$

Solution. To show that σ is bijective and σ^{-1} is its inverse, it is sufficient to verify that

$$\sigma^{-1} \circ \sigma = \mathrm{id},$$
$$\sigma \circ \sigma^{-1} = \mathrm{id}.$$

Let us show first how one could find the formulas for σ and σ^{-1} . We use the following notation: if $u \in \mathbb{R}^n$ and $a \in \mathbb{R}$, we denote (u, a) the point of \mathbb{R}^{n+1} whose first n coordinates are the u_i 's and whose last coordinate is a. Thus the hyperplane $\Pi = \mathbb{R}^n \times \{0\} \equiv \mathbb{R}^n$ contains the points of the form (u, 0).

Every non-horizontal line r containing the point N intersects the sphere \mathbb{S}^n at one point x (other than N) and intersects the plane Π at a point (u, 0). We want the formulas for the maps $\sigma: x \mapsto u$ and $\sigma^{-1}: u \mapsto x$. If we know x, then r is the image of the map

$$t \in \mathbb{R} \mapsto N + t(x - N) = (tx_0, \dots, tx_{n-1}, 1 + t(x_n - 1))$$

The intersection with the plane Π occurs when the last coordinate is 0, that is, when $t = \frac{1}{1-x_n}$. The point of intersection is (u, 0), where

$$u = (tx_0, \dots, tx_{n-1}) = \frac{1}{1 - x_n} (x_0, \dots, x_{n-1}).$$

This gives the formula for σ .

To compute σ^{-1} suppose we know the point u. Then r is the image of the map

$$t \in \mathbb{R} \mapsto N + t((u,0) - N)) = (tu_0, \dots, tu_n, 1 - t)$$

This point is contained in \mathbb{S}^n if and only if $t^2|u|^2 + (1-t)^2 = 1$. We rewrite the equation as $(|u|^2 + 1)t^2 - 2t = 0$ and find the solutions t = 0 (corresponding to the north pole) and $t = \frac{2}{|u|^2+1}$, corresponding to the point

$$x = \frac{1}{|u|^2 + 1} (2u_0, \dots, 2u_{n-1}, |u|^2 - 1).$$

This gives the formula for σ^{-1} .

(b) Verify that $\{\sigma, \tilde{\sigma}\}$ is a smooth atlas for \mathbb{S}^n .

Solution. The domains of σ and $\tilde{\sigma}$ cover \mathbb{S}^n . The transition map $\tilde{\sigma} \circ \sigma^{-1}$, defined on $\mathbb{R}^n \setminus \{0\}$ by the formula

$$\widetilde{\sigma} \circ \sigma^{-1}(u) = \sigma \left(-\frac{2u_0, \dots, 2u_{n-1}, |u|^2 - 1}{|u|^2 + 1} \right) = -\frac{(u_0, \dots, u_{n-1})}{|u|^2},$$
smooth.

is smooth.

(c) Show that the smooth structure defined by the atlas $\{\sigma, \tilde{\sigma}\}$ is the same as the one defined via graph coordinates in the lecture.

Solution. It suffices to show that each chart in $\{\sigma, \tilde{\sigma}\}$ is compatible with all the graph charts ϕ_i^{\pm} . The transition function is given by the formula

$$\phi_i^+ \circ \sigma^{-1}(y) = \phi_i^+ \left(\frac{2y_0, \dots, 2y_{n-1}, |y|^2 - 1}{|y|^2 + 1} \right)$$
$$= \left(\frac{2y_0, \dots, 2y_{i-1}, 2y_{i+1}, \dots, 2y_{n-1}, |y|^2 - 1}{|y|^2 + 1} \right)$$

and is therefore a smooth map. The inverse map $\sigma \circ (\phi_i^+)^{-1}$ is defined on $\sigma^{-1}(\mathbb{S}^n \cap U_i^+)$ and is [...]

Exercise 2.3. Let N be an open subset of a smooth n-manifold (M, \mathcal{A}) , endowed with the smooth structure described in Exercise 1.4. Prove that:

(a) The inclusion map $\iota: N \hookrightarrow M$ is a smooth map of manifolds.

Solution. We just need to check that the local expressions of ι are \mathcal{C}^k . These local expressions are of the form

$$\iota_{\psi}^{\varphi} = \varphi \circ \iota \circ \psi^{-1} = \varphi \circ \psi^{-1}$$

with $\varphi \in \mathcal{B}$ and $\psi \in \mathcal{A}$. Now, both charts φ, ψ belong to \mathcal{A} since $\mathcal{B} \subseteq \mathcal{A}$. Therefore the map $\varphi \circ \psi^{-1}$ is a transition map of \mathcal{A} , therefore it is \mathcal{C}^k . \Box

(b) A function $f: L \to N$ from a smooth manifold l is smooth f and only if the composite $\iota \circ f$ is smooth.

Solution. If f is \mathcal{C}^k , the composite $\iota \circ f$ is \mathcal{C}^k because ι is \mathcal{C}^k . Reciprocally, suppose ι is \mathcal{C}^k . Then f is \mathcal{C}^k , because any local expression f_{ξ}^{ψ} (with ξ a chart of L and $\psi \in \mathcal{B}$) is also a local expression of $\iota \circ f$. Indeed,

$$f_{\xi}^{\psi} = \psi \circ f \circ \xi^{-1} = \psi \circ \iota \circ f \circ \xi^{-1}.$$

Exercise 2.4 (Properties of manifolds). Show that:

(a) Let $\mathcal{A}, \mathcal{A}'$ be smooth atlases on a topological manifold M. Then \mathcal{A} and \mathcal{A}' determine the same smooth structure on M if and only if their union is a smooth atlas.

Solution. Let $\overline{\mathcal{A}}$ denote the maximal atlas determined by \mathcal{A} : the set of all charts that are smoothly compatible with every chart in \mathcal{A} . We have to show that $\overline{\mathcal{A}} = \overline{\mathcal{A}}'$ if and only if $\mathcal{A} \cup \mathcal{A}'$ is an atlas. We can define the equivalence relation between charts $\phi \sim \psi$ iff ϕ is smoothly compatible with ψ . Then the argument follow from the transitivity property of the smoothly compatible relationship. If $\mathcal{A} \cup \mathcal{A}'$ is an atlas then, $\phi \sim \psi$ for every $(U, \phi) \in \mathcal{A}$ and $(V, \psi) \in \mathcal{A}'$. This implies $\overline{\mathcal{A}} = \overline{\mathcal{A}}'$. Conversely, $\overline{\mathcal{A}} = \overline{\mathcal{A}}'$ implies that for $\xi \in \overline{\mathcal{A}}$, $\xi \sim \phi$ for every $(U, \phi) \in \mathcal{A}$ then $\xi \sim \psi$ for every $(V, \psi) \in \mathcal{A}'$. Therefore, $\phi \sim \psi$ for every $(U, \phi) \in \mathcal{A}$ and $(V, \psi) \in \mathcal{A}'$. So $\mathcal{A} \cup \mathcal{A}'$ is an atlas.

Solution. We know that $\phi: U \to \phi(U)$ is an homeomorphism. Moreover ϕ is a smooth map iff the composition $\mathrm{id}_{\mathbb{R}^n} \circ \phi \circ \phi^{-1}$ is smooth. Since $\mathrm{id}_{\mathbb{R}^n} \circ \phi \circ \phi^{-1} = \mathrm{id}_{\mathbb{R}^n}$ is a smooth map so ϕ is a smooth map. One can show that ϕ^{-1} is smooth as well by a similar argument.

Solution. Let $f : M \to N$ and $g : N \to P$ be smooth maps. Then by definitions the maps $\phi \circ f \circ \psi^{-1}$ and $\psi \circ g \circ \xi^{-1}$ are smooth for every smooth local chart ϕ , ψ , and ξ on M, N, and P respectively. Then the composition $h = f \circ g$ is smooth since the function

$$\phi \circ h \circ \xi^{-1} = \phi \circ f \circ g \circ \xi^{-1} = \phi \circ f \circ \psi^{-1} \circ \psi \circ g \circ \xi^{-1}$$

is smooth for every local chart.

(b) Two smooth atlases A₁, A₂ on M are equivalent iff the following holds: For every function f : N → M (where N is a smooth manifold), the function f is smooth as a map N → M₀ if and only if it is C^k as a map N → M₁.

Solution. (\Rightarrow) is clear. Let us prove prove (\Leftarrow) . Thus assuming the last property holds, let us show that the atlases \mathcal{A}_0 , \mathcal{A}_1 are equivalent. For this, it suffices to prove the following:

Claim: For every $\varphi \in \mathcal{A}_0$, $\psi \in \mathcal{A}_1$ the transition maps $\psi \circ \varphi^{-1}$ and $\varphi \circ \psi^{-1}$ are \mathcal{C}^k .

Proof of claim: The function φ is a \mathcal{C}^k isomorphism $U \to V$, where $U \subseteq M_0$ and $V \subseteq \mathbb{R}^n$ are open sets. Therefore its inverse $\varphi^{-1} : V \to M_0$ is \mathcal{C}^k . Then, by the hypothesis (applied to $f = \varphi^{-1}$), $\varphi^{-1} : V \to M_1$ is \mathcal{C}^k . Therefore $\psi \circ \varphi^{-1}$ is \mathcal{C}^k for each $\psi \in \mathcal{A}_1$, as claimed. An analogous argument shows that $\varphi \circ \psi^{-1}$ is \mathcal{C}^k .

Exercise 2.5 (to hand in). Prove the following

- (a) Let $c: M \to N$ the constant map between two smooth manifolds; c is smooth
- (b) Every smooth chart $\varphi : U \to \varphi(U)$ of M is a diffeomorphism; here U and $\varphi(U)$ are given the open subspace smooth structure defined in Exercise 1.4.
- (c) The composite $g \circ f$ of two smooth maps $f : M \to N, g : N \to P$ is smooth map.
- (d) Show that the quotient map $\pi : \mathbb{R}^{n+1} \setminus 0 \to \mathbb{RP}^n$ is a smooth map of manifolds where on \mathbb{RP}^n we considered the smooth structure defined in Exercise 1.7.

Exercise 2.6. On the real line \mathbb{R} (with the standard topology) we define two atlases $\mathcal{A} = \{ \mathrm{id}_{\mathbb{R}} \}, \mathcal{B} = \{ \varphi \}$, where $\varphi : \mathbb{R} \to \mathbb{R}$ is given by $\varphi(x) = x^3$.

(a) Find a smooth diffeomorphism $(\mathbb{R}, \overline{\mathcal{A}}) \to (\mathbb{R}, \overline{\mathcal{B}})$. Solution. The homeomorphism $f : (\mathbb{R}, \overline{\mathcal{A}}) \to (\mathbb{R}, \overline{\mathcal{B}})$ defined by $f(x) = x^3$ is a diffeomorphism since the local expressions

$$f_{\mathrm{id}_{\mathbb{R}}}^{\varphi} = \mathrm{id}_{\mathbb{R}} \circ f \circ \varphi^{-1} = \mathrm{id}_{\mathbb{R}}$$

and

$$f^{-1}|_{\varphi}^{\mathrm{id}_{\mathbb{R}}} = \varphi \circ f^{-1} \circ \mathrm{id}_{\mathbb{R}} = \mathrm{id}_{\mathbb{R}}$$

are smooth.