Partition of Unity.

Exercise 3.1. Consider \mathbb{R} with its standard smooth structure. Let $f : \mathbb{R} \to \mathbb{R}$ the sign function:

$$x \mapsto \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Let $A \subset \mathbb{R}$ a closed subset such that $f|_A$ is smooth in the sense defined in the Lecture. Find a smooth extension of $f|_A$ to all of \mathbb{R} what existence is guaranteed by the Extension Lemma. Notice that $f|_{(-\infty,0)\cup(0,\infty)}$ is smooth but does not admit an extension to \mathbb{R} ; i.e. the conclusion of the extension Lemma fails if we remove the hypothesis A closed.

Solution. Let $A \subseteq \mathbb{R}$ be a closed subset such that $f|_A$ is smooth. This set must exclude the point 0, where f is discontinuous (hence nonsmooth).

We have to define a smooth function $g : \mathbb{R} \to \mathbb{R}$ that is an extension $f|_A$. If A only contains positive numbers (or is empty), then we can define g as the constant function: g(x) = 1 for all x. Likewise, if A contains just negative numbers, we define g(x) = -1 for all x. Thus we may assume that A contains both positive and negative numbers. Let $a \in \mathbb{R}$ be the supremum of the closed set $A \cap (-\infty, 0]$, and let b be the infimum of the set $A \cap [0, +\infty)$. Note that a < 0 < b since $0 \notin A$.

To finish the exercise, it suffices to find a smooth function g that coincides with f outside the interval (a, b). (The interval (a, b) does not intersect A, therefore the values of g in this interval are irrelevant.) In the lectures we saw that there exists a smooth function $h : \mathbb{R} \to \mathbb{R}$ that satisfies h(x) = 1 for $x \leq a$ and h(x) = 0 for $x \geq b$. Therefore the function g(x) = 1 - 2h(x), which is also smooth, satisfies g(x) = -1 for $x \leq a$ and g(x) = 1 for $x \geq b$, and hence coincides with f outside the interval (a, b), and hence on the set A, as required.

Exercise 3.2. A continuous map $f : X \to Y$ is called *proper* if $f^{-1}(K)$ is compact for every compact set $K \subseteq Y$. Show that for every smooth manifold M there exists a smooth map $f : M \to [0, +\infty)$ that is proper.

Hint: Note that f must be unbounded unless M is compact. Use a function of the form $f = \sum_{i \in \mathbb{N}} c_i f_i$, where $(f_i)_{i \in \mathbb{N}}$ is a partition of unity and the c_i 's are real numbers.

Solution. Let $(U_i)_{i\in\mathbb{N}}$ be a countable topological basis for M such that $\overline{U_i}$ is compact for each i. Let (f_i) be a \mathcal{C}^k partition of unity on M such that $\operatorname{supp}(f_i) \subseteq U_i$ for each i. Define the \mathcal{C}^k function $f: M \to \mathbb{R}$ by the formula $f(x) = \sum_{i\in\mathbb{N}} c_i f_i(x)$, where $c_i \geq 0$ are numbers satisfying $\lim_{i\to\infty} c_i = +\infty$. (For instance, we may put $c_i = i$.)

We can view f(x) as a weighted average of the numbers c_i , using as weights the coefficients $f_i(x) \ge 0$, which satisfy $\sum_i f_i(x) = 1$. In particular, note that if $I_x \subseteq \mathbb{N}$ is the set of indices such that U_i contains the point x, then any upper or lower bound for the numbers c_i with $i \in I_x$ is also an upper or lower bound for f(x). It follows that if f(x) < c, then x is contained in the union of the first few U_i 's which satisfy $c_i < c$.

To see that f is proper, let $K \subseteq \mathbb{R}$ be a compact set. Take any number $c \geq 0$ such that $K \subseteq (-c, c)$, and let $i_c \in \mathbb{N}$ such that $c_i \geq c$ for $i \geq i_c$. The preimage $f^{-1}(K)$ consists of points x satisfying f(x) < c, and is therefore contained in the compact set $\bigcup_{i < i_c} \overline{U_i}$. Since the set $f^{-1}(K)$ is closed, we conclude that it is compact. \Box

Solutions Series 3

Exercise 3.3. Let M be a \mathcal{C}^k manifold and let U be an open neighborhood of the set $M \times \{0\}$ in the space $M \times [0, +\infty)$. Show that there exists a \mathcal{C}^k function $f: M \to (0, +\infty)$ whose graph is contained in U.

Solution. Every point $\{x\} \times \{0\}$ of the set $M \times \{0\}$ has a neighborhood $V \times [0, \varepsilon)$ contained in U, where $V \subseteq M$ is an open neighborhood of x and $\varepsilon > 0$. Thus there is a covering of M by open sets V_i and numbers $\varepsilon_i > 0$ such that $V_i \times [0, \varepsilon_i) \subseteq U$ for all i. Let $(f_i)_i$ be a partition of unity with $\operatorname{supp}(f_i) \subseteq V_i$. Then we can take the \mathcal{C}^k function $f = \sum_i \frac{\varepsilon_i}{2} f_i$.

Tangent vectors and tangent space.

Exercise 3.4. (Derivations in \mathbb{R}^n)

(a) Show that the function $D_{v|_a} : \mathcal{C}^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ defined by $f \mapsto \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} f(a+tv)$ is a derivation, i.e. it is \mathbb{R} -linear and satisfies the product rule.

Solution. Fixed the point $a \in \mathbb{R}^n$ and the vector $v \in \mathbb{R}^n$, for any function $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ we define a smooth function $h_f : t \in \mathbb{R} \mapsto f(a + tv) \in \mathbb{R}$, so that $D_{v|_a}(f) = h'_f(0)$. Then for any functions $f, g \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ and any number $\lambda \in \mathbb{R}$ we have

$$D_{v|_a}(f + \lambda g) = h'_{f+\lambda g}(0) = (h_f + \lambda h_g)'(0) = h'_f(0) + \lambda h'_g(0)$$

= $D_{v|_a}(f) + \lambda \cdot D_{v|_a}(g)$

and

$$D_{v|a}(f \cdot g) = h'_{fg}(0) = (h_f \cdot h_g)'(0) = h'_f(0) \cdot h_g(0) + h_f(0) \cdot h'_g(0)$$

= $D_{v|a}(f) \cdot g(0) + f(0) \cdot D_{v|a}(g).$

(b) Let $F : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$ be a smooth map. Prove that the linear map $DF_p : T_pU \to T_F(p)V$ is given, with respect to the standard basis $\langle \frac{\partial}{\partial x^i}|_p \rangle_{i=1,\dots,n}, \langle \frac{\partial}{\partial y^j}|_{F(p)} \rangle_{j=1,\dots,m}$, by the Jacobian matrix $\left(\frac{\partial F^j}{\partial x^i}\right)_{ij}$.

Solution. Any vector $v \in T_p \mathbb{R}^n$ can be written in the form $v = \sum_i v^i \frac{\partial}{\partial x^i}\Big|_p$. Our task is to calculate the vector $DF_p(v) \in T_{F(p)} \mathbb{R}^m$ and express it as a linear combination of the vectors $\frac{\partial}{\partial y^j}\Big|_{F(p)}$. To determine what is the vector $DF_p(v)$, we apply it to a general function $h \in \mathcal{C}^{\infty}(\mathbb{R}^m)$. We apply first the definiton of $DF_p(v)$ and then the chain rule, obtaining the following:

$$DF_p(v)(h) = v(h \circ F)$$

= $\sum_i v^i \frac{\partial}{\partial x^i} \Big|_p (h \circ F)$
= $\sum_{i \in n} v^i \sum_{j \in m} \frac{\partial h}{\partial y^j} \Big|_{F(p)} \frac{\partial F^j}{\partial x^i} \Big|_p$
= $\sum_{j \in m} \sum_{i \in n} v^i \frac{\partial F^j}{\partial x^i} \Big|_p \frac{\partial}{\partial y^j} \Big|_{F(p)} h$

Since this applies to each function $h \in C^{\infty}(\mathbb{R}^m)$, it means that $DF_p(v) = \sum_{j \in m} \sum_{i \in n} \frac{\partial F^j}{\partial x^i} \Big|_p v^i \frac{\partial}{\partial y^j} \Big|_{F(p)}$. Theferore the coordinates of the vector $w = DF_p(v)$ in the base $\frac{\partial}{\partial y^j} \Big|_{F(p)}$ are the numbers $w^j = \sum_{i \in n} \frac{\partial F^j}{\partial x^i} \Big|_p v^i$, i.e. the coefficients of the product of the matrix $\left(\frac{\partial F^j}{\partial x^i}\Big|_p\right)_{j,i}$ by the column vector $(v^i)_i$.

Exercise 3.5. Let M be a smooth n-manifold. Show that:

(a) The differential of a smooth map $F: M \to N$ at a point $p \in M$ is a welldefined linear map $D_pF: T_pM \to T_pN$.

Solution. This was proved in Lecture 3, page 10.

(b) Chain rule: for smooth maps $F: M \to N, G: N \to P$ and a point $p \in M$,

$$D_p(G \circ F) = D_{F(p)}G \circ D_pF.$$

In particular, if F is a diffeomorphism, then D_pF has inverse $(D_pF)^{-1} =$ $D_{F(p)}(F^{-1}).$

Solution. Take any vector $v \in T_p M$. To determine what is the vector $(D_p(G \circ$ F)(v), we apply it to a general function $h \in C^{\infty}(P)$.

We get

$$(D_p(G \circ F))(v)(h) = v(h \circ (G \circ F))$$

= $v((h \circ G) \circ F)$
= $(D_pF(v))(h \circ G)$
= $(D_{F(p)}G(D_pF(v)))(h)$
= $((D_{F(p)}G \circ D_pF)(v))(h)$

Since this is valid for all functions $h \in C^{\infty}(P)$, it implies that $(D_p(G \circ F))(v) =$ $(D_{F(p)}G \circ D_pF)(v)$. Since this holds for all vectors $v \in T_pM$, we conclude that $D_p(G \circ F) = D_{F(p)}G \circ D_pF$.

(c) Change of coordinates:

Let $X \in T_p M$ be a tangent vector and let $\varphi, \, \widetilde{\varphi}$ be smooth charts of M defined at a p such that $\widetilde{\varphi} \circ \varphi^{-1}$: $\varphi(U \cup \widetilde{U}) \to \widetilde{\varphi}(U \cup \widetilde{U})$ is defined by $(x^1,\ldots,x^n)\mapsto (z^1(x^1,\ldots,x^n),\ldots,z^n(x^1,\ldots,x^n))$. If $X\in T_pM$ we have that in the local coordinates charts

$$X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}|_{p} = \sum_{i=1}^{n} Z^{i} \frac{\partial}{\partial z^{i}}|_{p}$$

where X^i respectively Z^i are called *components* of the tangent vector in the coordinate base. Prove that

$$Z^{i} = \sum_{j=1}^{n} X^{j} \frac{\partial z^{i}}{\partial x^{j}}(\varphi(p))$$

Solution. Let $(X^i)_i$ be coordinate tuple of X with respect to the basis $\left(\frac{\partial}{\partial \varphi^i}\Big|_p\right)_i$, and let $(\widetilde{X}^j)_j$ be the coordinate tuple of X with respect the basis $\left(\frac{\partial}{\partial \widetilde{\varphi}^j}\Big|_p\right)_i$, so that

$$X = \sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}} \Big|_{p} = \sum_{j} \widetilde{X}^{j} \frac{\partial}{\partial \widetilde{\varphi}^{j}} \Big|_{p}.$$

Let us show that

$$\widetilde{X}^{j} = \sum_{i} X^{i} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}} \Big|_{\varphi(p)},$$

where $\frac{\partial \tilde{\varphi}^{j}}{\partial \varphi^{i}}\Big|_{\varphi(p)}$ is the partial derivative that appears in the position (j,i) of the Jacobian matrix $J_{\varphi(p)}(\widetilde{\varphi} \circ \varphi^{-1}) : \mathbb{R}^n \to \mathbb{R}^n$.

Using the equation $\frac{\partial}{\partial \varphi^i} = \sum_j \frac{\partial \widetilde{\varphi}^j}{\partial \varphi^i} \frac{\partial}{\partial \widetilde{\varphi}^j}$, we get

$$X = \sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}} = \sum_{i} X^{i} \sum_{j} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}} \frac{\partial}{\partial \widetilde{\varphi}^{j}} = \sum_{j} \sum_{i} X^{i} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}} \frac{\partial}{\partial \widetilde{\varphi}^{j}}$$

Since on the other hand we have

$$X = \sum_{j} \widetilde{X}^{j} \frac{\partial}{\partial \widetilde{\varphi}^{j}}$$

and the vectors $\frac{\partial}{\partial \tilde{\varphi}^j}$ are linearly independent, we conclude that

$$\widetilde{X}^j = \sum_i X^i \, \frac{\partial \widetilde{\varphi}^j}{\partial \varphi^i}$$

Donc la morale c'est que nous pouvons exprimer les coefficients des vecteurs tangents d'une base par rapport à une autre base en utilisant les coefficients (j, i) de la matrice de la transformation linéaire $D_{\varphi(p)}(\tilde{\varphi} \circ \varphi^{-1})$.

Exercise 3.6 (Velocity vectors of curves). Let M be a differentiable manifold. The velocity vector of a differentiable curve $\gamma : I \subseteq \mathbb{R} \to M$ at an instant $t \in I$ is the vector $\gamma'(t) := D_t \gamma(1|_t) \in T_{\gamma(t)} M$.

Show that for any tangent vector $X \in T_p M$ there exists a smooth curve $\gamma : (-\varepsilon, \varepsilon) \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = X$.

Solution. Let (U, φ) be a chart of M such that $p \in U$, and let $v = (v^i)$ the *n*-tuple of coordinates of the vector X with respect to the basis $\left(\frac{\partial}{\partial \varphi^i}\Big|_p\right)_i$ of T_pM , so that $X = \sum_i v^i \left.\frac{\partial}{\partial \varphi^i}\right|_p$. We define the curve $\gamma = \varphi^{-1} \circ \widetilde{\gamma}$, where $\widetilde{\gamma} : (-\varepsilon, \varepsilon) \to \varphi(U) \subseteq \mathbb{R}^n$ is a curve defined by the formula $\widetilde{\gamma}(t) = \varphi(p) + tv$, and $\varepsilon > 0$ is small enough so that $\varphi(p) + tv \in \varphi(U)$ for all $t \in (-\varepsilon, \varepsilon)$.

It is clear that $\gamma(0) = p$. Furthermore, we claim that $\gamma'(0) = X$. To see this, we take and arbitrary function $f \in \mathcal{C}^{\infty}(M)$ and compute

$$\begin{aligned} \gamma'(0)(f) &= D_0 \gamma(1|_0)(f) \\ &= 1|_0 (f \circ \gamma) \\ &= (f \circ \gamma)'(0) \\ &= (f \circ \varphi^{-1} \circ \widetilde{\gamma})'(0) \\ &= \sum_i \frac{\partial f \circ \varphi^{-1}}{\partial x^i} \Big|_{\varphi(p)} \ (\widetilde{\gamma}^i)'(0) \\ &= \sum_i \left(\frac{\partial}{\partial \varphi^i} \Big|_p f \right) v^i \\ &= X(f) \end{aligned}$$

Exercise 3.7 (Spherical coordinates on \mathbb{R}^3). Consider the following map defined for $(r, \varphi, \theta) \in W := \mathbb{R}^+ \times (0, 2\pi) \times (0, \pi)$:

$$\Psi(r,\varphi,\theta) = (r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta) \in \mathbb{R}^3.$$

Check that Ψ is a diffeomorphism¹ onto its image $\Psi(W) =: U$. We can therefore consider Ψ^{-1} as a smooth chart on \mathbb{R}^3 and it is common to call the component functions of Ψ^{-1} the **spherical coordinates** (r, φ, θ) .

Express the coordinate vectors of this chart

$$\frac{\partial}{\partial r}\Big|_p, \frac{\partial}{\partial \varphi}\Big|_p, \frac{\partial}{\partial \theta}\Big|_p$$

at some point $p \in U$ in terms of the standard coordinate vectors $\frac{\partial}{\partial x}\Big|_p, \frac{\partial}{\partial y}\Big|_p, \frac{\partial}{\partial z}\Big|_p$.

¹Here "diffeomorphism" is meant in the standard sense of maps between open subsets of \mathbb{R}^3 .

where

$$\begin{split} \Psi &: W \to U \\ (r, \varphi, \theta) &\mapsto (x, y, z) \\ \begin{cases} x = r \cos \varphi \sin \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \theta \end{cases} \end{split}$$

Let $p \in U$. The general formula for the change of coordinates is

$$\frac{\partial}{\partial \psi^i}\Big|_p = \sum_j \frac{\partial}{\partial \psi^i}\Big|_p \widetilde{\psi}^j \frac{\partial}{\partial \widetilde{\psi}^j}\Big|_p.$$

We apply this formula in the current setting where $\psi = \Psi^{-1}$ is the given chart on U(by abuse of notation we denote its coordinate functions by (r, φ, θ)) and $\tilde{\psi} = \mathrm{id}_{\mathbb{R}^3}$ (we denote its coordinate functions by (x, y, z)). Then for $p \in U$ we have²

$$\begin{split} \frac{\partial}{\partial r}\Big|_{p} &= \frac{\partial x}{\partial r}\frac{\partial}{\partial x}\Big|_{p} + \frac{\partial y}{\partial r}\frac{\partial}{\partial y}\Big|_{p} + \frac{\partial z}{\partial r}\frac{\partial}{\partial z}\Big|_{p} \\ &= \cos\varphi\sin\theta\frac{\partial}{\partial x}\Big|_{p} + \sin\varphi\sin\theta\frac{\partial}{\partial y}\Big|_{p} + \cos\theta\frac{\partial}{\partial z}\Big|_{p} \\ &= \frac{1}{(x^{2} + y^{2} + z^{2})^{1/2}}\Big(x\frac{\partial}{\partial x}\Big|_{p} + y\frac{\partial}{\partial y}\Big|_{p} + z\frac{\partial}{\partial z}\Big|_{p}\Big) \\ \frac{\partial}{\partial \varphi}\Big|_{p} &= \frac{\partial x}{\partial \varphi}\frac{\partial}{\partial x}\Big|_{p} + \frac{\partial y}{\partial \varphi}\frac{\partial}{\partial y}\Big|_{p} + \frac{\partial z}{\partial \varphi}\frac{\partial}{\partial z}\Big|_{p} \\ &= -r\sin\varphi\sin\theta\frac{\partial}{\partial x}\Big|_{p} + r\cos\varphi\sin\theta\frac{\partial}{\partial y}\Big|_{p} \\ &= -y\frac{\partial}{\partial x}\Big|_{p} + x\frac{\partial}{\partial y}\Big|_{p} \\ \frac{\partial}{\partial \theta}\Big|_{p} &= \frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}\Big|_{p} + \frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}\Big|_{p} + \frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\Big|_{p} \\ &= r\cos\varphi\cos\theta\frac{\partial}{\partial x}\Big|_{p} + r\sin\varphi\cos\theta\frac{\partial}{\partial y}\Big|_{p} - r\sin\theta\frac{\partial}{\partial z}\Big|_{p} \\ &= \frac{xz}{(x^{2} + y^{2})^{\frac{1}{2}}}\frac{\partial}{\partial x}\Big|_{p} + \frac{yz}{(x^{2} + y^{2})^{\frac{1}{2}}}\frac{\partial}{\partial y}\Big|_{p} - (x^{2} + y^{2})^{\frac{1}{2}}\frac{\partial}{\partial z}\Big|_{p} \end{split}$$

Exercise 3.8. (To hand in) Consider the inclusion $\iota: S^2 \to \mathbb{R}^3$, where we endow both spaces with the standard smooth structure. Let $p \in S^2$. What is the image of $D_p \iota: T_p S^2 \to T_p \mathbb{R}^3$? (Identify $T_p \mathbb{R}^3$ with \mathbb{R}^3 in the standard way, i.e. $e_i \mapsto \frac{\partial}{\partial x^i}|_p$) So the result should be the equation for a plane in \mathbb{R}^3 .)

Hint: Use Exercise 7 on spherical coordinates.

²There is a bit of abuse of notation going on; e.g. $\frac{\partial x}{\partial r}$ really means $\frac{\partial}{\partial r}|_{p}(x)$, i.e. the coordinate vector $\frac{\partial}{\partial r}$ applied to the function $x: \mathbb{R}^{3} \to \mathbb{R}$ and this by definition is $\frac{\partial(r\cos\varphi\sin\theta)}{\partial r}|_{\psi(p)}$. The potentially confusing thing here is that r denotes at the same time the first component of the chart ψ (in the lecture this was φ^{i}) and the coordinate on the image of the chart in \mathbb{R}^{3} (in the lecture this was x^{i}). But this sloppiness is common and actually helps with computations as you see above.