Partition of Unity.

Exercise 3.1. Consider \mathbb{R} with its standard smooth structure. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ the sign function:

$$
x \mapsto \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{cases}
$$

Let $A \subset \mathbb{R}$ a closed subset such that $\left.f\right|_{A}$ is smooth in the sense defined in the Lecture. Find a smooth extension of $\left.f\right|_{A}$ to all of \mathbb{R} what existence is guaranteed by the Extension Lemma. Notice that $\left.f\right|_{(-\infty, 0) \cup(0, \infty)}$ is smooth but does not admit an extension to \mathbb{R}; i.e. the conclusion of the extension Lemma fails if we remove the hypothesis A closed.

Solution. Let $A \subseteq \mathbb{R}$ be a closed subset such that $\left.f\right|_{A}$ is smooth. This set must exclude the point 0 , where f is discontinuous (hence nonsmooth).

We have to define a smooth function $g: \mathbb{R} \rightarrow \mathbb{R}$ that is an extension $\left.f\right|_{A}$. If A only contains positive numbers (or is empty), then we can define g as the constant function: $g(x)=1$ for all x. Likewise, if A contains just negative numbers, we define $g(x)=-1$ for all x. Thus we may assume that A contains both positive and negative numbers. Let $a \in \mathbb{R}$ be the supremum of the closed set $A \cap(-\infty, 0]$, and let b be the infimum of the set $A \cap[0,+\infty)$. Note that $a<0<b$ since $0 \notin A$.

To finish the exercise, it suffices to find a smooth function g that coincides with f outside the interval (a, b). (The interval (a, b) does not intersect A, therefore the values of g in this interval are irrelevant.) In the lectures we saw that there exists a smooth function $h: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies $h(x)=1$ for $x \leq a$ and $h(x)=0$ for $x \geq b$. Therefore the function $g(x)=1-2 h(x)$, which is also smooth, satisfies $g(x)=-1$ for $x \leq a$ and $g(x)=1$ for $x \geq b$, and hence coincides with f outside the interval (a, b), and hence on the set A, as required.

Exercise 3.2. A continuous map $f: X \rightarrow Y$ is called proper if $f^{-1}(K)$ is compact for every compact set $K \subseteq Y$. Show that for every smooth manifold M there exists a smooth map $f: M \rightarrow[0,+\infty)$ that is proper.
Hint: Note that f must be unbounded unless M is compact. Use a function of the form $f=$ $\sum_{i \in \mathbb{N}} c_{i} f_{i}$, where $\left(f_{i}\right)_{i \in \mathbb{N}}$ is a partition of unity and the c_{i} 's are real numbers.

Solution. Let $\left(U_{i}\right)_{i \in \mathbb{N}}$ be a countable topological basis for M such that $\overline{U_{i}}$ is compact for each i. Let $\left(f_{i}\right)$ be a \mathcal{C}^{k} partition of unity on M such that $\operatorname{supp}\left(f_{i}\right) \subseteq U_{i}$ for each i. Define the \mathcal{C}^{k} function $f: M \rightarrow \mathbb{R}$ by the formula $f(x)=\sum_{i \in \mathbb{N}} c_{i} f_{i}(x)$, where $c_{i} \geq 0$ are numbers satisfying $\lim _{i \rightarrow \infty} c_{i}=+\infty$. (For instance, we may put $c_{i}=i$.)

We can view $f(x)$ as a weighted average of the numbers c_{i}, using as weights the coefficients $f_{i}(x) \geq 0$, which satisfy $\sum_{i} f_{i}(x)=1$. In particular, note that if $I_{x} \subseteq \mathbb{N}$ is the set of indices such that U_{i} contains the point x, then any upper or lower bound for the numbers c_{i} with $i \in I_{x}$ is also an upper or lower bound for $f(x)$. It follows that if $f(x)<c$, then x is contained in the union of the first few U_{i} 's which satisfy $c_{i}<c$.

To see that f is proper, let $K \subseteq \mathbb{R}$ be a compact set. Take any number $c \geq 0$ such that $K \subseteq(-c, c)$, and let $i_{c} \in \mathbb{N}$ such that $c_{i} \geq c$ for $i \geq i_{c}$. The preimage $f^{-1}(K)$ consists of points x satisfying $f(x)<c$, and is therefore contained in the compact set $\bigcup_{i<i_{c}} \overline{U_{i}}$. Since the set $f^{-1}(K)$ is closed, we conclude that it is compact.

Exercise 3.3. Let M be a \mathcal{C}^{k} manifold and let U be an open neighborhood of the set $M \times\{0\}$ in the space $M \times[0,+\infty)$. Show that there exists a \mathcal{C}^{k} function $f: M \rightarrow(0,+\infty)$ whose graph is contained in U.

Solution. Every point $\{x\} \times\{0\}$ of the set $M \times\{0\}$ has a neighborhood $V \times[0, \varepsilon)$ contained in U, where $V \subseteq M$ is an open neighborhood of x and $\varepsilon>0$. Thus there is a covering of M by open sets V_{i} and numbers $\varepsilon_{i}>0$ such that $V_{i} \times\left[0, \varepsilon_{i}\right) \subseteq U$ for all i. Let $\left(f_{i}\right)_{i}$ be a partition of unity with $\operatorname{supp}\left(f_{i}\right) \subseteq V_{i}$. Then we can take the \mathcal{C}^{k} function $f=\sum_{i} \frac{\varepsilon_{i}}{2} f_{i}$.

Tangent vectors and tangent space.

Exercise 3.4. (Derivations in \mathbb{R}^{n})
(a) Show that the function $D_{\left.v\right|_{a}}: \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ defined by $\left.f \mapsto \frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0} f(a+t v)$ is a derivation, i.e. it is \mathbb{R}-linear and satisfies the product rule.
Solution. Fixed the point $a \in \mathbb{R}^{n}$ and the vector $v \in \mathbb{R}^{n}$, for any function $f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ we define a smooth function $h_{f}: t \in \mathbb{R} \mapsto f(a+t v) \in \mathbb{R}$, so that $D_{\left.v\right|_{a}}(f)=h_{f}^{\prime}(0)$. Then for any functions $f, g \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ and any number $\lambda \in \mathbb{R}$ we have

$$
\begin{aligned}
D_{\left.v\right|_{a}}(f+\lambda g)=h_{f+\lambda g}^{\prime}(0)=\left(h_{f}+\lambda h_{g}\right)^{\prime}(0) & =h_{f}^{\prime}(0)+\lambda h_{g}^{\prime}(0) \\
& =D_{\left.v\right|_{a}}(f)+\lambda \cdot D_{\left.v\right|_{a}}(g)
\end{aligned}
$$

and

$$
\begin{aligned}
D_{\left.v\right|_{a}}(f \cdot g)=h_{f g}^{\prime}(0)=\left(h_{f} \cdot h_{g}\right)^{\prime}(0) & =h_{f}^{\prime}(0) \cdot h_{g}(0)+h_{f}(0) \cdot h_{g}^{\prime}(0) \\
& =D_{\left.v\right|_{a}}(f) \cdot g(0)+f(0) \cdot D_{\left.v\right|_{a}}(g)
\end{aligned}
$$

(b) Let $F: U \subseteq \mathbb{R}^{n} \rightarrow V \subseteq \mathbb{R}^{m}$ be a smooth map. Prove that the linear $\operatorname{map} D F_{p}: T_{p} U \rightarrow T_{F}(p) V$ is given, with respect to the standard basis $\left\langle\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right\rangle_{i=1, \ldots n},\left\langle\left.\frac{\partial}{\partial y^{j}}\right|_{F(p)}\right\rangle_{j=1, \ldots m}$, by the Jacobian matrix $\left(\frac{\partial F^{j}}{\partial x^{i}}\right)_{i j}$.
Solution. Any vector $v \in T_{p} \mathbb{R}^{n}$ can be written in the form $v=\left.\sum_{i} v^{i} \frac{\partial}{\partial x^{i}}\right|_{p}$. Our task is to calculate the vector $D F_{p}(v) \in T_{F(p)} \mathbb{R}^{m}$ and express it as a linear combination of the vectors $\left.\frac{\partial}{\partial y^{j}}\right|_{F(p)}$. To determine what is the vector $D F_{p}(v)$, we apply it to a general function $h \in \mathcal{C}^{\infty}\left(\mathbb{R}^{m}\right)$. We apply first the definiton of $D F_{p}(v)$ and then the chain rule, obtaining the following:

$$
\begin{aligned}
D F_{p}(v)(h) & =v(h \circ F) \\
& =\left.\sum_{i} v^{i} \frac{\partial}{\partial x^{i}}\right|_{p}(h \circ F) \\
& =\left.\left.\sum_{i \in n} v^{i} \sum_{j \in m} \frac{\partial h}{\partial y^{j}}\right|_{F(p)} \frac{\partial F^{j}}{\partial x^{i}}\right|_{p} \\
& =\left.\left.\sum_{j \in m} \sum_{i \in n} v^{i} \frac{\partial F^{j}}{\partial x^{i}}\right|_{p} \frac{\partial}{\partial y^{j}}\right|_{F(p)} h
\end{aligned}
$$

Since this applies to each function $h \in C^{\infty}\left(\mathbb{R}^{m}\right)$, it means that $D F_{p}(v)=$ $\left.\left.\sum_{j \in m} \sum_{i \in n} \frac{\partial F^{j}}{\partial x^{i}}\right|_{p} v^{i} \frac{\partial}{\partial y^{j}}\right|_{F(p)}$. Theferore the coordinates of the vector $w=$ $D F_{p}(v)$ in the base $\left.\frac{\partial}{\partial y^{j}}\right|_{F(p)}$ are the numbers $w^{j}=\left.\sum_{i \in n} \frac{\partial F^{j}}{\partial x^{i}}\right|_{p} v^{i}$, i.e. the coefficents of the product of the matrix $\left(\left.\frac{\partial F^{j}}{\partial x^{i}}\right|_{p}\right)_{j, i}$ by the column vector $\left(v^{i}\right)_{i}$.

Exercise 3.5. Let M be a smooth n-manifold. Show that:
(a) The differential of a smooth map $F: M \rightarrow N$ at a point $p \in M$ is a welldefined linear map $D_{p} F: T_{p} M \rightarrow T_{p} N$.
Solution. This was proved in Lecture 3, page 10.
(b) Chain rule: for smooth maps $F: M \rightarrow N, G: N \rightarrow P$ and a point $p \in M$,

$$
D_{p}(G \circ F)=D_{F(p)} G \circ D_{p} F
$$

In particular, if F is a diffeomorphism, then $D_{p} F$ has inverse $\left(D_{p} F\right)^{-1}=$ $D_{F(p)}\left(F^{-1}\right)$.
Solution. Take any vector $v \in T_{p} M$. To determine what is the vector $\left(D_{p}(G \circ\right.$ $F))(v)$, we apply it to a general function $h \in C^{\infty}(P)$.

We get

$$
\begin{aligned}
\left(D_{p}(G \circ F)\right)(v)(h) & =v(h \circ(G \circ F)) \\
& =v((h \circ G) \circ F) \\
& =\left(D_{p} F(v)\right)(h \circ G) \\
& =\left(D_{F(p)} G\left(D_{p} F(v)\right)\right)(h) \\
& =\left(\left(D_{F(p)} G \circ D_{p} F\right)(v)\right)(h)
\end{aligned}
$$

Since this is valid for all functions $h \in C^{\infty}(P)$, it implies that $\left(D_{p}(G \circ F)\right)(v)=$ $\left(D_{F(p)} G \circ D_{p} F\right)(v)$. Since this holds for all vectors $v \in T_{p} M$, we conclude that $D_{p}(G \circ F)=D_{F(p)} G \circ D_{p} F$.
(c) Change of coordinates:

Let $X \in T_{p} M$ be a tangent vector and let $\varphi, \widetilde{\varphi}$ be smooth charts of M defined at a p such that $\widetilde{\varphi} \circ \varphi^{-1}: \varphi(U \cup \widetilde{U}) \rightarrow \widetilde{\varphi}(U \cup \widetilde{U})$ is defined by $\left(x^{1}, \ldots, x^{n}\right) \mapsto\left(z^{1}\left(x^{1}, \ldots, x^{n}\right), \ldots, z^{n}\left(x^{1}, \ldots, x^{n}\right)\right)$. If $X \in T_{p} M$ we have that in the local coordinates charts

$$
X=\left.\sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}\right|_{p}=\left.\sum_{i=1}^{n} Z^{i} \frac{\partial}{\partial z^{i}}\right|_{p}
$$

where X^{i} respectively Z^{i} are called components of the tangent vector in the coordinate base. Prove that

$$
Z^{i}=\sum_{j=1}^{n} X^{j} \frac{\partial z^{i}}{\partial x^{j}}(\varphi(p))
$$

Solution. Let $\left(X^{i}\right)_{i}$ be coordinate tuple of X with respect to the basis $\left(\left.\frac{\partial}{\partial \varphi^{i}}\right|_{p}\right)_{i}$, and let $\left(\widetilde{X}^{j}\right)_{j}$ be the coordinate tuple of X with respect the basis $\left(\left.\frac{\partial}{\partial \widetilde{\varphi}^{j}}\right|_{p}\right)_{j}$, so that

$$
X=\left.\sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}\right|_{p}=\left.\sum_{j} \widetilde{X}^{j} \frac{\partial}{\partial \widetilde{\varphi}^{j}}\right|_{p}
$$

Let us show that

$$
\widetilde{X}^{j}=\left.\sum_{i} X^{i} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}}\right|_{\varphi(p)},
$$

where $\left.\frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}}\right|_{\varphi(p)}$ is the partial derivative that appears in the position (j, i) of the Jacobian matrix $J_{\varphi(p)}\left(\widetilde{\varphi} \circ \varphi^{-1}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Using the equation $\frac{\partial}{\partial \varphi^{i}}=\sum_{j} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}} \frac{\partial}{\partial \widetilde{\varphi}^{j}}$, we get

$$
X=\sum_{i} X^{i} \frac{\partial}{\partial \varphi^{i}}=\sum_{i} X^{i} \sum_{j} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}} \frac{\partial}{\partial \widetilde{\varphi}^{j}}=\sum_{j} \sum_{i} X^{i} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}} \frac{\partial}{\partial \widetilde{\varphi}^{j}}
$$

Since on the other hand we have

$$
X=\sum_{j} \widetilde{X}^{j} \frac{\partial}{\partial \widetilde{\varphi}^{j}}
$$

and the vectors $\frac{\partial}{\partial \bar{\varphi}^{j}}$ are linearly independent, we conclude that

$$
\widetilde{X}^{j}=\sum_{i} X^{i} \frac{\partial \widetilde{\varphi}^{j}}{\partial \varphi^{i}}
$$

Donc la morale c'est que nous pouvons exprimer les coefficiens des vecteurs tangents d'une base par rapport à une autre base en utilisant les coefficients (j, i) de la matrice de la transformation linéaire $D_{\varphi(p)}\left(\widetilde{\varphi} \circ \varphi^{-1}\right)$.
Exercise 3.6 (Velocity vectors of curves). Let M be a differentiable manifold. The velocity vector of a differentiable curve $\gamma: I \subseteq \mathbb{R} \rightarrow M$ at an instant $t \in I$ is the vector $\gamma^{\prime}(t):=D_{t} \gamma\left(\left.1\right|_{t}\right) \in T_{\gamma(t)} M$.

Show that for any tangent vector $X \in T_{p} M$ there exists a smooth curve γ : $(-\varepsilon, \varepsilon) \rightarrow M$ such that $\gamma(0)=p$ and $\gamma^{\prime}(0)=X$.

Solution. Let (U, φ) be a chart of M such that $p \in U$, and let $v=\left(v^{i}\right)$ the n-tuple of coordinates of the vector X with respect to the basis $\left(\left.\frac{\partial}{\partial \varphi^{i}}\right|_{p}\right)_{i}$ of $T_{p} M$, so that $X=\left.\sum_{i} v^{i} \frac{\partial}{\partial \varphi^{2}}\right|_{p}$. We define the curve $\gamma=\varphi^{-1} \circ \widetilde{\gamma}$, where $\widetilde{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \varphi(U) \subseteq \mathbb{R}^{n}$ is a curve defined by the formula $\widetilde{\gamma}(t)=\varphi(p)+t v$, and $\varepsilon>0$ is small enough so that $\varphi(p)+t v \in \varphi(U)$ for all $t \in(-\varepsilon, \varepsilon)$.

It is clear that $\gamma(0)=p$. Furthermore, we claim that $\gamma^{\prime}(0)=X$. To see this, we take and arbitrary function $f \in \mathcal{C}^{\infty}(M)$ and compute

$$
\begin{aligned}
\gamma^{\prime}(0)(f) & =D_{0} \gamma\left(\left.1\right|_{0}\right)(f) \\
& =\left.1\right|_{0}(f \circ \gamma) \\
& =(f \circ \gamma)^{\prime}(0) \\
& =\left(f \circ \varphi^{-1} \circ \widetilde{\gamma}\right)^{\prime}(0) \\
& =\left.\sum_{i} \frac{\partial f \circ \varphi^{-1}}{\partial x^{i}}\right|_{\varphi(p)}\left(\widetilde{\gamma}^{i}\right)^{\prime}(0) \\
& =\sum_{i}\left(\left.\frac{\partial}{\partial \varphi^{i}}\right|_{p} f\right) v^{i} \\
& =X(f)
\end{aligned}
$$

Exercise 3.7 (Spherical coordinates on \mathbb{R}^{3}). Consider the following map defined for $(r, \varphi, \theta) \in W:=\mathbb{R}^{+} \times(0,2 \pi) \times(0, \pi)$:

$$
\Psi(r, \varphi, \theta)=(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta) \in \mathbb{R}^{3} .
$$

Check that Ψ is a diffeomorphism ${ }^{11}$ onto its image $\Psi(W)=: U$. We can therefore consider Ψ^{-1} as a smooth chart on \mathbb{R}^{3} and it is common to call the component functions of Ψ^{-1} the spherical coordinates (r, φ, θ).

Express the coordinate vectors of this chart

$$
\left.\frac{\partial}{\partial r}\right|_{p},\left.\frac{\partial}{\partial \varphi}\right|_{p},\left.\frac{\partial}{\partial \theta}\right|_{p}
$$

at some point $p \in U$ in terms of the standard coordinate vectors $\left.\frac{\partial}{\partial x}\right|_{p},\left.\frac{\partial}{\partial y}\right|_{p},\left.\frac{\partial}{\partial z}\right|_{p}$.

[^0]Solution. Consider the transition from spherical coordinates (r, φ, θ) to Cartesian coordinates (x, y, z), given by the map

$$
\begin{aligned}
\Psi: W & \rightarrow U \\
(r, \varphi, \theta) & \mapsto(x, y, z)
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
x=r \cos \varphi \sin \theta \\
y=r \sin \varphi \sin \theta \\
z=r \cos \theta
\end{array}\right.
$$

Let $p \in U$. The general formula for the change of coordinates is

$$
\left.\frac{\partial}{\partial \psi^{i}}\right|_{p}=\left.\left.\sum_{j} \frac{\partial}{\partial \psi^{i}}\right|_{p} \widetilde{\psi}^{j} \frac{\partial}{\partial \widetilde{\psi}^{j}}\right|_{p} .
$$

We apply this formula in the current setting where $\psi=\Psi^{-1}$ is the given chart on U (by abuse of notation we denote its coordinate functions by (r, φ, θ)) and $\widetilde{\psi}=\operatorname{id}_{\mathbb{R}^{3}}$ (we denote its coordinate functions by (x, y, z)). Then for $p \in U$ we hav Θ^{2}

$$
\begin{aligned}
& \left.\frac{\partial}{\partial r}\right|_{p}=\left.\frac{\partial x}{\partial r} \frac{\partial}{\partial x}\right|_{p}+\left.\frac{\partial y}{\partial r} \frac{\partial}{\partial y}\right|_{p}+\left.\frac{\partial z}{\partial r} \frac{\partial}{\partial z}\right|_{p} \\
& =\left.\cos \varphi \sin \theta \frac{\partial}{\partial x}\right|_{p}+\left.\sin \varphi \sin \theta \frac{\partial}{\partial y}\right|_{p}+\left.\cos \theta \frac{\partial}{\partial z}\right|_{p} \\
& =\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}\left(\left.x \frac{\partial}{\partial x}\right|_{p}+\left.y \frac{\partial}{\partial y}\right|_{p}+\left.z \frac{\partial}{\partial z}\right|_{p}\right) \\
& \left.\frac{\partial}{\partial \varphi}\right|_{p}=\left.\frac{\partial x}{\partial \varphi} \frac{\partial}{\partial x}\right|_{p}+\left.\frac{\partial y}{\partial \varphi} \frac{\partial}{\partial y}\right|_{p}+\left.\frac{\partial z}{\partial \varphi} \frac{\partial}{\partial z}\right|_{p} \\
& =-\left.r \sin \varphi \sin \theta \frac{\partial}{\partial x}\right|_{p}+\left.r \cos \varphi \sin \theta \frac{\partial}{\partial y}\right|_{p} \\
& =-\left.y \frac{\partial}{\partial x}\right|_{p}+\left.x \frac{\partial}{\partial y}\right|_{p} \\
& \left.\frac{\partial}{\partial \theta}\right|_{p}=\left.\frac{\partial x}{\partial \theta} \frac{\partial}{\partial x}\right|_{p}+\left.\frac{\partial y}{\partial \theta} \frac{\partial}{\partial y}\right|_{p}+\left.\frac{\partial z}{\partial \theta} \frac{\partial}{\partial z}\right|_{p} \\
& =\left.r \cos \varphi \cos \theta \frac{\partial}{\partial x}\right|_{p}+\left.r \sin \varphi \cos \theta \frac{\partial}{\partial y}\right|_{p}-\left.r \sin \theta \frac{\partial}{\partial z}\right|_{p} \\
& =\left.\frac{x z}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}} \frac{\partial}{\partial x}\right|_{p}+\left.\frac{y z}{\left(x^{2}+y^{2}\right)^{\frac{1}{2}}} \frac{\partial}{\partial y}\right|_{p}-\left.\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \frac{\partial}{\partial z}\right|_{p}
\end{aligned}
$$

Exercise 3.8. (To hand in) Consider the inclusion $\iota: S^{2} \rightarrow \mathbb{R}^{3}$, where we endow both spaces with the standard smooth structure. Let $p \in S^{2}$. What is the image of $D_{p} \iota: T_{p} S^{2} \rightarrow T_{p} \mathbb{R}^{3}$? (Identify $T_{p} \mathbb{R}^{3}$ with \mathbb{R}^{3} in the standard way, i.e. $\left.e_{i} \mapsto \frac{\partial}{\partial x^{2}}\right|_{p}$) So the result should be the equation for a plane in \mathbb{R}^{3}.)
Hint: Use Exercise 7 on spherical coordinates.

[^1]
[^0]: ${ }^{1}$ Here "diffeomorphism" is meant in the standard sense of maps between open subsets of \mathbb{R}^{3}.

[^1]: ${ }^{2}$ There is a bit of abuse of notation going on; e.g. $\frac{\partial x}{\partial r}$ really means $\left.\frac{\partial}{\partial r}\right|_{p}(x)$, i.e. the coordinate vector $\frac{\partial}{\partial r}$ applied to the function $x: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and this by definition is $\left.\frac{\partial(r \cos \varphi \sin \theta)}{\partial r}\right|_{\psi(p)}$. The potentially confusing thing here is that r denotes at the same time the first component of the chart ψ (in the lecture this was φ^{i}) and the coordinate on the image of the chart in \mathbb{R}^{3} (in the lecture this was $\left.x^{i}\right)$. But this sloppiness is common and actually helps with computations as you see above.

