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Partition of Unity.

Exercise 3.1. Consider R with its standard smooth structure. Let f : R — R the
sign function:

1 ifxz>0
T+ <0 ifz=0
-1 ifz<0

Let A C R a closed subset such that f|4 is smooth in the sense defined in the
Lecture. Find a smooth extension of f|4 to all of R what existence is guaranteed
by the Extension Lemma. Notice that f ’(foo,O)U(O,oo) is smooth but does not admit
an extension to R; i.e. the conclusion of the extension Lemma fails if we remove the
hypothesis A closed.

Solution. Let A C R be a closed subset such that f|4 is smooth. This set must
exclude the point 0, where f is discontinuous (hence nonsmooth).

We have to define a smooth function g : R — R that is an extension f|4. If A
only contains positive numbers (or is empty), then we can define g as the constant
function: g(z) =1 for all z. Likewise, if A contains just negative numbers, we define
g(z) = —1 for all z. Thus we may assume that A contains both positive and negative
numbers. Let a € R be the supremum of the closed set AN (—o0, 0], and let b be the
infimum of the set AN [0,+00). Note that a < 0 < b since 0 ¢ A.

To finish the exercise, it suffices to find a smooth function g that coincides with
f outside the interval (a,b). (The interval (a,b) does not intersect A, therefore the
values of g in this interval are irrelevant.) In the lectures we saw that there exists a
smooth function h : R — R that satisfies h(x) = 1 for < a and h(z) = 0 for x > b.
Therefore the function g(z) = 1 —2h(x), which is also smooth, satisfies g(z) = —1 for
x < a and g(z) =1 for x > b, and hence coincides with f outside the interval (a,b),
and hence on the set A, as required. O

Exercise 3.2. A continuous map f : X — Y is called proper if f~1(K) is compact
for every compact set K C Y. Show that for every smooth manifold M there exists
a smooth map f : M — [0,4o00) that is proper.

Hint: Note that f must be unbounded unless M is compact. Use a function of the form f =

ZieN ¢ifi, where (f;)ien is a partition of unity and the ¢;’s are real numbers.

Solution. Let (U;);en be a countable topological basis for M such that U, is compact
for each i. Let (f;) be a C* partition of unity on M such that supp(f;) C U; for each
i. Define the C¥ function f : M — R by the formula f(z) = > ,cy¢ fi(z), where
¢; > 0 are numbers satisfying lim;_,~ ¢; = +00. (For instance, we may put ¢; = i.)

We can view f(x) as a weighted average of the numbers ¢;, using as weights the
coefficients f;(x) > 0, which satisfy >, fi(z) = 1. In particular, note that if I, C N
is the set of indices such that U; contains the point =, then any upper or lower bound
for the numbers ¢; with ¢ € I, is also an upper or lower bound for f(z). It follows
that if f(z) < ¢, then z is contained in the union of the first few U;’s which satisfy
c; < C.

To see that f is proper, let K C R be a compact set. Take any number ¢ > 0 such
that K C (—¢,c), and let 4. € N such that ¢; > ¢ for i > i.. The preimage f~(K)
consists of points z satisfying f(x) < ¢, and is therefore contained in the compact set

Ui<s, Us. Since the set f~1(K) is closed, we conclude that it is compact. O
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Exercise 3.3. Let M be a C¥ manifold and let U be an open neighborhood of
the set M x {0} in the space M x [0,+0c). Show that there exists a C* function
f: M — (0,400) whose graph is contained in U.

Solution. Every point {x} x {0} of the set M x {0} has a neighborhood V X [0, ¢)
contained in U, where V C M is an open neighborhood of z and € > 0. Thus there
is a covering of M by open sets V; and numbers ¢; > 0 such that V; x [0,&;) C U for
all i. Let (f;); be a partition of unity with supp(f;) € V;. Then we can take the C*
function f =}, 5 fi. O

Tangent vectors and tangent space.

Exercise 3.4. (Derivations in R")

(a)

Show that the function D,|, : C**(R") — R defined by f — %h:of(a +tv) is
a derivation, i.e. it is R-linear and satisfies the product rule.

Solution. Fixed the point a € R™ and the vector v € R", for any function
f € C>*(R") we define a smooth function hy : t € R — f(a + tv) € R, so
that D, (f) = h’f(O). Then for any functions f,g € C*°(R") and any number
A € R we have
Dy, (f +Ag) = Wpyxg(0) = (hy + Ahy)'(0) = B(0) + Ay (0)
= ‘D’U|a(f) +A- Dv\a(g)

= Dv|a(f) 9(0) + £(0) - Dy, (9)-
0

C R" - V C R™ be a smooth map. Prove that the linear
map DF, : T,U — Tp(p)V is given, with respect to the standard basis
)j

<8£Z lp)izt.. <i]F(p) i—1,..m, by the Jacobian matrix (%};Z)”

OyJ
i _0

ox' Ip
Our task is to calculate the vector DFj,(v) € Tp(,)R™ and express it as a

Solution. Any vector v € TyR™ can be written in the form v = >, v

linear combination of the vectors X To determine what is the vector

0
o | p
DF,(v), we apply it to a general function h € C*(R™). We apply first the
definiton of DF),(v) and then the chain rule, obtaining the following:

DF,(v)(h) =v(hoF)

:Zvi 6‘;' (hoF)

OFJ
_g ]%;ayj i) 02,
OFJ
N Z Z ozt Byﬂ Fp)
JjEmM €N

Since this applies to each function h € C*°(R™), it means that DF,(v) =
OFJ i 0
Z]Gm ZZG?’L oxt l ayJ F

DF,(v) in the base % -

) Theferore the coordinates of the vector w =

1€n Ot

) are the numbers w/ = Y. 2E21 4i je. the
P

coefficents of the product of the matrix (%I; f
P

> by the column vector

. Vi

(Ul)z'. O
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Exercise 3.5. Let M be a smooth n-manifold. Show that:

(a) The differential of a smooth map F' : M — N at a point p € M is a well-
defined linear map D,F : T,M — T,N.
Solution. This was proved in Lecture 3, page 10. g

(b) Chain rule: for smooth maps F': M — N, G: N — P and a point p € M,

Dy(G o F) = DpgyG o DyF.

In particular, if F is a diffeomorphism, then D,F has inverse (D,F)~! =
Dpgy(F71).
Solution. Take any vector v € T, M. To determine what is the vector (D,(Go

F))(v), we apply it to a general function h € C*®°(P).
We get

(Dp(G o F))(v)(h) = v(ho(GoF))
=v((hoG)oF)
(DpF(v))(hoG)
= (Dp@p)G(DpF(v)))(h)
= ((Dpp)G o DpF)(v))(h)
Since this is valid for all functions h € C°°(P), it implies that (D,(GoF))(v) =

(DG o DpF')(v). Since this holds for all vectors v € T, M, we conclude
that Dy(G o F) = Dy, G o DF. O

(c) Change of coordinates:
Let X € T,M be a tangent vector and let ¢, ¢ be smooth charts of M

defined at a p such that 3o ¢! : (U UU) — @U UU) is defined by
(zt, .. 2" = (N2t .2, 2 (L 2™). I X € T, M we have that
in the local coordinates charts

n ) n )
X =3 X g =302 5l

=1

where X’ respectively Z! are called components of the tangent vector in the
coordinate base. Prove that

g &Uﬂ

Solution. Let (X*); be coordinate tuple of X with respect to the basis (

and let ()? 7); be the coordinate tuple of X with respect the basis (

so that 5 5
Zi: O lp zj: 0PI Ip

Let us show that

XI = ZX a;

7

o(p)’

0
22" lo(p)
the Jacobian matrix J,,) (¢ o e 1 R" = R

. . o o7 9
Using the equation 57 = Zj o7 9

i 0PI 8~j 0
X = ZX Z Zaﬁ 3@ ZZ aizai@

where

is the partial derivative that appears in the position (j,i) of

we get
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Since on the other hand we have
~. 0
_ J
X = Ej X 95

ol

and the vectors 557 are linearly independent, we conclude that

.y 0P
] (3
R
Donc la morale c’est que nous pouvons exprimer les coefficiens des vecteurs
tangents d’une base par rapport a une autre base en utilisant les coefficients
(4,) de la matrice de la transformation linéaire Dy, (@ o @™ '). O

Exercise 3.6 (Velocity vectors of curves). Let M be a differentiable manifold. The
velocity vector of a differentiable curve v : I C R — M at an instant ¢ € [ is the
vector ¥'(t) := Dyy(1]t) € Ty M.

Show that for any tangent vector X & T,M there exists a smooth curve 7 :
(—e,e) — M such that v(0) = p and 7/(0) = X.

Solution. Let (U, ) be a chart of M such that p € U, and let v = (v%) the n-tuple
of coordinates of the vector X with respect to the basis (% )i of T,M, so that
P

X =3 8%72- . We define the curve v = ¢~ 07, where 7 : (—¢,¢) — p(U) C R" is
P

a curve defined by the formula ¥(¢) = ¢(p) + tv, and € > 0 is small enough so that

o(p) +tv e U) for all t € (—e,¢).

It is clear that (0) = p. Furthermore, we claim that 4/(0) = X. To see this, we
take and arbitrary function f € C°°(M) and compute

Y (0)(f) = Doy(1lo)(f)

=1lo(f o)
= (f07)(0)
= (fop " o9)(0)
3f090_1 ~iy/
= —_ 0
Zi: Ou* »(p) 0w
o1 .\ .
= XZ: (aw pf) v
= X(f)

g

Exercise 3.7 (Spherical coordinates on R3). Consider the following map defined for
(r,p,0) € W :=R" x (0,27) x (0,7):

U(r,p,0) = (rcospsinh, rsingsiné, rcosf) € R>.

Check that ¥ is a diffeomorphisnﬂ onto its image U(W) =: U. We can therefore
consider ¥~! as a smooth chart on R? and it is common to call the component
functions of ¥~! the spherical coordinates (7, p,#).

Express the coordinate vectors of this chart

0 ) 0 ‘ 0
81" p’ aQO p’ 80 P
at some point p € U in terms of the standard coordinate vectors 6% » a% » % o

Here “diffeomorphism” is meant in the standard sense of maps between open subsets of R3.
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Solution. Consider the transition from spherical coordinates (r,¢,0) to Cartesian
coordinates (z,y, z), given by the map

v:-w — U
(r,0,0) = (2,9,2)

where
T =171cosp sind
y =rsiny sinf
z=rcosf

Let p € U. The general formula for the change of coordinates is
617/)2 Z 8wz

We apply this formula in the current setting where ) = W1 is the given chart on U
(by abuse of notation we denote its coordinate functions by (r,¢,0)) and 1 = idgs
(we denote its coordinate functions by (x,y, z)). Then for p € U we hawv

o 0Ox 0 oy 0 0z 0

EM*E%{%MJ 5&

81[)3

= cos psin Hﬁ
N 14 oz lp

—|—smgosm0 ‘ +COSH—)

1 0 0 0
- (22 + y2 + 22)1/2 <x%‘p+y87y‘ +Z%’ )

0 oxr 0 Oy 0 0z 0

9ole = 559 553yl * 3502
:—rsmgosm0—‘ —i—rcosgosm@ay‘
:_yax’ ‘

o| Ox 0 8y 0 0z 0

50l = 635l 003yl * 507 s
—rcoswcosﬁ—’ —i—rsmgpcos& ‘ —rsm@—‘

xz 0 yz 8 9 910
= Tt mrar, @ T
(@2 +92)3 02l (2 4423 Oyl b
O

Exercise 3.8. (To hand in) Consider the inclusion ¢ : $?> — R3, where we endow

both spaces with the standard smooth structure. Let p € S?. What is the image of
. . . . b

Dyt : TpS?* — T,R?? (Identify T,R? with R? in the standard way, i.e. e; = 50[,) So

the result should be the equation for a plane in R3.)

Hint: Use Exercise [7] on spherical coordinates.

2There is a bit of abuse of notation going on; e.g. % really means %\p(m), i.e. the coordinate
vector % applied to the function z : R® — R and this by definition is WW(?)' The poten-
tially confusing thing here is that r denotes at the same time the first component of the chart ¢ (in
the lecture this was ¢*) and the coordinate on the image of the chart in R® (in the lecture this was
z"). But this sloppiness is common and actually helps with computations as you see above.
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