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Warning Both notations TpF and DpF for the differential of a smooth map at a

point are used in the file. This is due to the fact that solutions have been written in

different moments. Hopefully, this will not cause any confusion.

Exercise 5.1. Let f : R2 → R, f(x, y) = x3 + y3 + 1.

(a) What are the regular values of f? For which c ∈ R is the level set f−1({c})
an embedded submanifold of R2?

Solution. The gradient of f ,

∇f(x, y) = (3x2, 3y2),

vanishes precisely at the origin (x, y) = (0, 0). Thus Dpf : DpR2 → Tf(p)R
has rank 0 if and only if p = (x, y) = (0, 0). Thus every c ∈ R is a regular

value except c = 1.

By the regular preimage theorem, each level set f−1({c}) with c ̸= 1 is a

smooth embedded submanifold in R2. As for the level set f−1({1}) we have

to argue differently. The theorem does not say that f−1({1}) is not a smooth

submanifold. We have to study this case separately. Observe that in this case

one has

f−1({1}) = {x3 + y3 = 0} = {x = −y}
i.e., f−1({1}) is a line going through the origin. Thus, also f−1({1}) is a

smooth submanifold of R2. Summing up, all level sets of this function are

smooth submanifolds. □

(b) In the case where S = f−1({c}) is an embedded submanifold, p ∈ S, write

down an equation for the tangent space ι∗( TpS) ⊂ TpR2 where as usual we

identify TpR2 ∼= R2 (i.e. you are expected to write down the equation for a

line in R2).

Solution. By the regular preimage theorem, if c ̸= 1 we have TpS = Ker Tpf

for all p ∈ S = f−1(c).

Let us compute Tpf . If V = (Vx, Vy) ∈ TpR2 ≡ R2, then Tpf(V ) =

3 p2x Vx + 3 p2y Vy, where p = (px, py). Hence

Ker Tpf = {V ∈ TpR2 : p2x Vx + p2y Vy = 0}.

When c = 1 we notice that S = {x = −y}, thus TpS = {V ∈ TpR2 : Vx =

−Vy}. □

Exercise 5.2. Let S = F−1(c) for c a regular value of a smooth function F :M → N .

Let us fix p ∈ S. Prove that TpS = Ker(DpF : TpM → TF (p)N).

Hint: Use the Slice chart Lemma and the fact that TpM ∼= TpU ∼= Tφ(p)φ(U) for every open

neighbourhood U of p and for any smooth chart φ

Solution. By Theorem 5.12 in Lee’s book (proved in Lecture 5) since c is a regular

value S = F−1(c) is a smoothly embedded submanifold of M. Let us denote by

ι : S ↪→ M the embedding. Fix a point p and charts (U,φ) around p, (V, ψ) around

c = F (p) such that

F |ψφ : φ(U) ⊆ Rm → ψ(V ) ⊆ Rn

is the standard submersion. These exist by the constant rank theorem and the defi-

nition of regular point. Then φ(S ∩U) =
{
xn+1 = · · · = xm = 0

}
and (S ∩U,φ|S) is

a slice chart for S and φ(S ∩ U)
φ◦ι−−→ φ(U) is the standard m− n embedding. Using

the hint,

TpS ∼= Tφ(p)φ(S ∩ U) ∼= Im(Dφ(p)ι)
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where the last identification immediately follows from the local coordinate expression

ι|φφ|S of ι. Now, since

F |ψφ ◦ ι|φ|Sφ = 0

it follows that

Dφ(p)F |ψφ ◦Dιφ(p)|φ|Sφ = 0

which implies

Im(Dφ(p)ι) ↪→ Ker(Dφ(p)F |ψφ).

On the other hand, since Dφ(p)F |
ψ
φ is surjective by hypothesis, the dimension of

Ker(Dφ(p)F |
ψ
φ) = m − n which is also the dimension of S and thus of its tangent

space. But an injective linear map between vector spaces of the same dimension is

an isomorphism, so we are done.

Notice that also without choosing slice charts, assuming we already new that S =

F−1(C) is an embedded submanifold of M with embedding ι : S ↪→ M , we would

already know thatDpF ◦Dpι = 0 since by definition of S the composition F ◦ι = c. □

Exercise 5.3. Show that the map g : T2 → R3 given by

g([s, t]) = ((2 + cos s) cos t, (2 + cos s) sin t, sin s)

is a smooth embedding of the 2-torus in R3.

(In this case the torus is defined as T2 = R2/2πZ2.)

Solution. Let π : R2 → T2 be the quotient map. We define the composite map

f = g ◦ π : R2 → R3. Note that

f(s, t) = ((2 + cos s) cos t, (2 + cos s) sin t, sin s).

Clearly f is smooth, therefore (by the previous exercise) g is smooth.

Let us show that g is an embedding. We first show that f is an immersion. This

follows because for any point p = (s, t), the vectors

Dpf(e0) =
∂f(s, t)

∂s

∣∣∣∣
p

= (− sin(s) cos t,− sin s sin t, cos s)

Dpf(e1) =
∂f(s, t)

∂t

∣∣∣∣
p

= (−(2 + cos s) sin(t), (2 + cos s) sin t, 0)

are linearly independent. Since π is a surjective local diffeomorphism, it follows that

g is an immersion. (Indeed, each point q ∈ T2 is of the form q = π(p), with p ∈ R2.

Differentiating the composite map f = g ◦ π at p we get

Tpf = Tqg ◦ Tpπ,

and since Tpf is injective and Tpπ is an isomorphism, we conclude that Tqg is

injective as well.)

Finally, g : T2 → R3 is a closed map because its domain is compact and its

codomain is Hausdorff. Since g is injective, we conclude that g is a a topological

embedding. □

Exercise 5.4 (To hand in). Show that the following subgroups ofGLn(R) are closed
submanifolds. Compute their dimension and their tangent space at the identity.

(a) The special linear group SLn(R), consisting of matrices with determinant equal

to 1.

(b) The orthogonal group On(R), consiting of the orthogonal matrices A (which

satisfy A⊤A = In).

Hint: Consider the map f : Mn → Msym
n that sends A 7→ A⊤A, there Msym

n is the vector

space of symmetric n× n matrices.
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Exercise 5.5. If S0, S1 are smooth embedded submanifolds of M0, M1 respectively,

then S0 × S1 is a smooth embedded submanifold of M0 ×M1.

Solution. By hypothesis there exists embeddings f0 : L0 → M0 and f1 : L1 → M1

whose images are S0 and S1 respectively. The set S0 ×S1 is the image of the Cr map

f0 × f1 : L0 × L1 → M0 ×M1 that sends (p0, p1) 7→ (f0(p0), f1(p1)). Thus it suffices

to prove that f0 × f1 is a Cr embedding.

We check first that f0 × f1 is an immersion. For this, note that for each point p =

(p0, p1) the tangent transformation Dpf0×f1 sends (v0, v1) 7→ (Dp0f0(v0), Dp1f1(v1)).

(Here we are using the identification Tp0,p1(L0 × L1) ≡ Dp0L0 ×Dp1L1.) This trans-

formation is injective since both Dp0f0 and Dp1f1 are injective.

Finally, let us check that f0×f1 is a topological embedding. We know that each map

fi|Si has a topological inverse gi : Si → Li. Thus the map g0×g1 : S0×S1 → L0 → L1

is an inverse of (f0 × f1)|S0×S1 . This proves that f0 × f1 is an homeomorphism onto

its image S0 × S1. We conclude that f0 × f1 is a Cr embedding. □

Exercise 5.6. (a) Show that a subset S ⊆ Rn is a smooth-embedded k-submanifold

if each point x ∈ S has an open neighborhood W such that the set S ∩W
is the graph of a smooth function that expresses some n − k coordinates in

terms of the remaining k coordinates. (More precisely, the function is of the

form f : U ⊆ RI → RI′ , where I is a k-element subset of n := {0, . . . , n− 1},
I ′ is its complement, and U ⊆ RI is an open set.)

Solution. Let x ∈ S. By hypothesis there exists a k-element set I ⊆ {0, . . . , n−
1} (we assume w.l.o.g. I = {0, . . . , k− 1}), an open set W ⊆ Rn, an open set

U ⊆ RI and a Cr function f : U → RI′ such that S∩W = Graf . Instead of the

open setW , it is better to use the smaller open setW ′ =W ∩ (U×RI′). Note
that this set contains the graph of f , therefore we still have S ∩W ′ = Graf .

The set S ∩ W ′ is the image of the map g : U → W ′ : x 7→ (x, f(x)).

This map is a Cr embedding because it is Cr and it admits a Cr retraction

W ′ → U : (x, y) 7→ x. Therefore its image Img(g) = Graf = S ∩W ′ is an

embedded submanifold of W ′. This proves that S fulfills the condition of

being locally an embedded k-submanifold of Rn. By a theorem of the course,

we conclude that S is an embedded submanifold of Rn. □

(b) Let S be the set of real m × n matrices of rank k. Show that S is a smooth

submanifold of Rm×n. What is its dimension ?

Hint: A rank-k matrix A ∈ Rm×n has an invertible k × k submatrix A|I×J (where I ⊆ m,

J ⊆ n are k-element sets). Show that the coefficients Ai′,j′ with i′ ̸∈ I and j′ ̸∈ J can be

expressed as a smooth function of the other coefficients of A.

Solution. For any pair of k-element sets I ⊆ m, J ⊆ n we define an open set

UI,J ⊆ Rm×n by

UI,J = {A ∈ Rm×n | the k × k matrix A|I×J is invertible},

where A|I×J = (ai,j)i∈I, j∈J . Note that the sets UI,J cover S because every

matrix of rank k has an invertible k × k submatrix.

Let us show that SI,J = S ∩ UI,J is the graph of a smooth function. For

a matrix A ∈ SI,J we will show that the part A|I′×J ′ of the matrix can be

expressed as a function of the remaining coefficients. (Recall that I ′ ⊆ m and

J ′ ⊆ n are the complements of I and J).

Since the column space of A has dimension k, and the k columns A∗,j with

j ∈ J are linearly independent (because the block A|I×J is invertible), these

columns form a base of the column space. Hence any other column A∗,j′ , with

j′ ∈ J ′, is a linear combination of the columns A∗,j with j ∈ J . That is, we
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can write

A∗,j′ =
∑
j∈J

A∗,j xj,j′ ,

using some real coefficients (xj,j′)j∈J,j′∈J ′ . Thus we have

Ai,j′ =
∑
j∈J

Ai,j xj,j′ for i ∈ n. (1)

Using these equations just for i ∈ I we can find out the coefficients xj,j′

because the matrix A|I×J is invertible. Denote its inverse by B = (Bl,i)l∈J,i∈I .

(Note that B depends smoothly on A, this can be seen using the formula for

the inverse matrix in terms of cofactors.) Multiplying equations (1) for i ∈ I

by the matrix B (that is, multiplying by the coefficient Bl,i and summing over

i ∈ I), we get∑
i∈I

Bl,iAi,j′ =
∑
i∈I

∑
j∈J

Bl,iAi,j xj,j′ =
∑
j∈J

δl,j xj,j′ = xl,j′ for l ∈ J,

or, renaming, ∑
i∈I

Bj,iAi,j′ = xj,j′ for j ∈ J , j ∈ J ′

Now that we know the value of the coefficients xj,j′ we can replace in equation

(1), this time restricted to the remaining values of i, that is, for i ∈ I ′.

Renaming the index i by i′, we get

Ai′,j′ =
∑
j∈J

Ai′,j xj,j′ =
∑
j∈J

Ai′,j
∑
i∈I

Bj,iAi,j′ for i′ ∈ I ′, j′ ∈ J ′.

Since B depends smoothly on A, this last equation shows that the (m−k)(n−
k) coefficients Ai′,j′ with i

′ ∈ I ′, j′ ∈ J ′ can be expressed as a smooth function

of the remaining k2 + (m − k)k + k(n − k) = k(m + n − k) coefficients. In

summary, for each open set UI,J , the set S ∩ UI,J is the graph of the smooth

function

GLk × R(m−k)×k × Rk×(n−k) → R(m−k)×(n−k)

(A|I×J , A|I′×J , A|I×J ′) 7→ (
∑

j∈J
∑

i∈I Ai′,jBj,iAi,j′)i′∈I′, j′∈J ′

where B is the inverse of A|I×J . Therefore S is a smoothly embedded k(m+

n− k)-submanifold of Rm×n. □

Exercise 5.7. If M is connected and f : M → M is an idempotent smooth map

(“idempotent” means that f ◦ f = f), then f(M) is an embedded submanifold of M .

Hint: Show that f has constant rank. Use what you know about a linear projector P : V → V and

the complementary projector idV −P .

Solution. Unfortunately the place where this exercise was taken from has an in-

complete solution, thus we will not follow the hint. We will give a more compli-

cated solution that is suggested in https://mathoverflow.net/questions/162552/

idempotents-split-in-category-of-smooth-manifolds/162556#162556.

We first record some facts that do not involve differentiability.

Lemma. If X is a topological space and f : X → X is an idempotent continuous

map, then:

(a) The image f(X) is the set of fixed points fix(X) = {x ∈ X : f(x) = x}.
(b) In consequence, the image f(X) is a closed subset of X.

(c) If X is connected, then f(X) is connected.

(d) Every open neighborhood U of a point p ∈ f(X) contains a smaller open

neighborhood U ′ of p that is invariant by f , i.e. f(U ′) ⊆ U ′.
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Proof. (a) If y ∈ f(X), we can write y = f(x) for some x ∈ X, therefore f(y) =

f(f(x)) = f(x) = y, thus y ∈ fix(f). Reciprocally, if x ∈ fix(f), then f(x) = x and it

is clear that x ∈ f(X).

(b) follows from (a) since the equation f(x) = x define a closed subset of M .

(c) is a general property of continuous maps.

(d) We define U ′ = U ∩ f−1(U). We claim that U ′ is invariant by f . Indeed,

take any point x ∈ U ′. This means that both x and f(x) are in U . Then the point

y = f(x) is in U ′ because both y and f(y) = f(f(x)) = f(x) = y are in U . □

Now we solve the following local version of the problem.

Proposition. If M ⊆ Rn is an open set and f : M → M is an idempotent Cr map,

then each point p ∈ f(M) has an open neighborhood U such that f(M) ∩ U is a

Cr-embedded submanifold of U of dimension k = rankp(f).

Proof. For a point p ∈ f(M), the tangent operator Dpf is a linear endomorphism of

DpM = Rn which satisfies

Dpf = Dp(f ◦ f) = Dpf ◦Dpf.

Thus Dpf is a linear projector in Rn, and its image and kernel are complementary

subspaces of Rn of dimensions k and k′ = n− k.

Let π = idnR−Dpf be the complementary projector of Dpf . (Check that π is also

a linear projector and has Ker(π) = Img(Dpf) and Img(π) = Ker(Dpf).)

We may assume w.l.o.g that KerDpf = Rk′ and we consider π as a map Rn → Rk′ .
We define a map g :M → Rk′ that sends x 7→ π(x− f(x)).

Note that Dpg = π ◦ (Dpf − idRn) = π ◦ π = π. Therefore g has rank k′ and hence

there is an open neighborhood W of p such that g|W :W → Rk′ is a submersion. By

the Lemma, we may assume that W is invariant by f .

By the regular preimage theorem, the set

S = {q ∈W : g(q) = 0} = (g|W )−1(0),

is a k-submanifold of W .

Note that f(M)∩W = fix(f |W ) is contained in S. However, it is not clear that all

points of S are in f(M).

Now, consider the Cr map f |SW :W → S. Since f has rank k at p, and dimS = k,

we see that f(W ) contains an open neighborhood V ′ of p in S. We write V ′ = V ∩S,
where V is an open set of M .

Let U =W ∩ V . We claim that f(M)∩U is an embedded k-submanifold of U . In

fact f(M) ∩ U = V ′. Indeed, if x ∈ V ′ = V ∩ S, then x ∈ f(W ) (by definition of V ′)

and it follows that x ∈ W , thus x ∈ U = V ∩W . We conclude that x ∈ f(W ) ∩ U .

Reciprocally, if x ∈ f(M) ∩ U = f(M) ∩W ∩ V , we see that x is fixed by f , and

also x ∈ W , so it follows that x ∈ fix(f |W ) ⊆ S, thus x ∈ S ∩ V = V ′. This shows

that f(M) ∩ U coincides with V ′, which is an open subset of S, which in turn is an

embedded k-submanifold of W . Thus f(M) ∩ U is an embedded k-submanifold of

U . □

Now we can solve the original problem. Let f : M → M be an idempotent Cr
map, where M is a connected Cr manifold. We will show that f(M) = fix(f) is an

embedded submanifold of M .

We first note that the Proposition holds for the manifold M even though M is not

an open subset of Rn.

Claim. Each point p ∈ fix(f) = f(M) has an open neighborhood U in M such that

fix(f) ∩ U is an embedded submanifold of U of dimension kp = rankp f .
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Proof. Proof: Take a chart (V, ϕ) that is defined at p. By the Lemma, we may

assume that its domain V is f -invariant. Therefore the map f |VV is an idempotent

map V → V . It follows that the local expression f̃ = ϕ ◦ f ◦ ϕ−1 is an idempotent Cr
map of the open set Ṽ = ϕ(V ) ⊆ Rn. In addition, the point p̃ = ϕ(p) is fixed by f̃ .

By the Proposition, there is an open neighborhood Ũ of p̃ in Ṽ such that fix(f̃) ∩ Ũ
is a kp-submanifold of Ũ . Applying the diffeomorphism ϕ−1, we get an open subset

U = ϕ−1(Ũ) of M such that fix(f) ∩ U is a kp-submanifold of U . □

To finish showing that fix(f) is an embedded submanifold ofM , we must show that

the function p 7→ kp = rankp f is constant throughout f(M). Since fix(f) = f(M) is

connected, it suffices to show that kp is locally constant. But this follows from the

claim. Indeed, if p ∈ fix(f) and Up is an open neighborhood of p such that fix(f)∩Up
is a kp-submanifold of Up, then for any point q ∈ fix(f) ∩ Up we have kq = kp,

because applying the claim again we get an open set Uq such that fix(f) ∩ Uq is a kq
submanifold, and then fix(f) ∩ Uq ∩ Up is a submanifold of dimensions kp and kq at

the same time. This manifold is nonempty because it contains the point q, therefore

kp = kq.

□

6


