Markov Chains and Algorithmic Applications - IC - EPFL

Homework 13

Exercise 1. Let X, Y be two Markov chains with following same transition probabilities:

$$
p_{i j}= \begin{cases}1 / 2 & \text { if } j=i \\ 1 / 4 & \text { if } j=i \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

That is, X and Y are two versions of the symmetric lazy random walk on \mathbb{Z}. Let us assume now that $X_{0}=0$ and $Y_{0}=1$.
a) Using a random mapping representation, describe a coupling of X and Y such that these two chains meet with the highest probability after one step only. What is the value of this probability?
b) Using a random mapping representation, describe two different couplings of X and Y such that these two chains never meet.

Variant: Consider the same questions, but now with the initial conditions $X_{0}=0$ and $Y_{0}=2$.

