Markov Chains and Algorithmic Applications - IC - EPFL

Homework 10

Exercise 1. [Metropolized independent sampling in a particular case]

Let $0 < \theta < 1$ and let us consider the following distribution π on $S = \{1, \dots, N\}$:

$$\pi_i = \frac{1}{Z} \theta^{i-1}, \quad i = 1, \dots, N$$

where Z is the normalization constant, whose computation is left to the reader.

- a) Consider the base chain $\psi_{ij} = \frac{1}{N}$ for all $i, j \in S$ and derive the transition probabilities p_{ij} obtained with the Metropolis-Hastings algorithm.
- b) Using the result of the course, derive an upper bound on $||P_i^n \pi||_{\text{TV}}$. Compare the bounds obtained for i = 1 and i = N (for large values of N).
- c) Deduce an upper bound on the (order of magnitude of the) mixing time

$$T_{\varepsilon} = \inf\{n \ge 1 : \max_{i \in S} \|P_i^n - \pi\|_{\text{TV}} \le \varepsilon\}$$

Exercise 2. On the state space $S = \{0, 1, 2\}$ and given $\beta > 0$, consider the following distribution:

$$\pi = \frac{1}{Z} \left(1, e^{-2\beta}, e^{-\beta} \right)$$

where the normalization constant $Z = 1 + e^{-2\beta} + e^{-\beta}$ is easy to compute in this case. For any given $\beta > 0$, we would like to sample from π , in order to obtain (by taking β large) an estimate of the global minimum of the function $f: S \to \mathbb{Z}$ defined as f(0) = 0, f(1) = 2 and f(2) = 1. Of course, in this situation, both finding the global minimum of f and sampling from the distribution π are trivial tasks, but the idea here is to get an idea of the performance (i.e. rate of convergence) of the Metropolis-Hastings algorithm in a simple case.

Consider the base chain on S with transition probabilities

$$\psi_{01} = \psi_{21} = 1$$
 and $\psi_{10} = \psi_{12} = \frac{1}{2}$.

- a) Compute the transition probabilities p_{ij} of the corresponding Metropolis chain.
- b) Check that the detailed balance equation is satisfied.
- c) Compute the eigenvalues $\lambda_0 \geq \lambda_1 \geq \lambda_2$ of P. (Hint: You already know that $\lambda_0 = 1$.)
- d) Express the spectral gap γ as a function of β . How does it behave as β gets large?