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Problem 1: MMSE Estimation

Consider the scenario where p(x|d) = de~ %, for 2 > 0 (and zero otherwise), that is, the observed
data z is distributed according to an exponential with mean 1/d. Moreover, the desired variable d itself
is also exponentially distributed, with mean 1/pu.

(a) Find the MMSE estimator of d given z, and calculate the corresponding mean-squared error incurred
by this estimator.

(b) Find the MAP estimator of d given x.

Problem 2: Parameter Estimation and Fisher Information
The Fisher information J(©) for the family fp(x),0 € R is defined by
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Find the Fisher information for the following families:
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(a) fo(z) = N(0,0) = 7=e”

(b) fo(x) =0e %% x>0

(¢) What is the Cramer Rao lower bound on Eg((X) — 0)2, where 6(X) is an unbiased estimator of
0 for (a) and (b)?



Problem 3: Conditional Independence and MMSE

For simplicity, throughout this problem, all random variables are assumed to be zero-mean.
Remark: You may directly skip to Part (d), taking Equation (2) for granted (as a characterization of
conditional independence for Gaussians).

(a) Show that if X and Y are conditionally independent given Z, then

E[(X - E[X[Z])(Y - E[Y|Z])] = 0. (1)

(b) Recall that if X and Y are jointly Gaussian (zero-mean), then we have ¥ = aX + W, for some
constant «, where W is zero-mean Gaussian independent of X. Use this to prove the well-known fact
that for jointly Gaussian X and Y, if E[XY] =0, then X and Y are independent. Hint: Simply plug
in.

(c) Let XY, Z be jointly Gaussian (and zero-mean, as throughout this problem). Prove that if
E[(X - E[X|Z]))(Y —E[Y[Z])] =0, (2)

then X and Y are conditionally independent given Z. Hint: Make sure to solve Part (b) first. Recall
that for three jointly Gaussians X, Y, Z, we can always write ¥ = vX + §Z 4 V, for some constants
and J, where V is Gaussian and independent of X and Z.

(d) Let X,Y,Z be jointly Gaussian (and zero-mean, as throughout this problem). Recall that we can
write Z = aX + BY + W, for some constants « and (3, where W is Gaussian of some appropriate
variance 0‘2,[,, independent of X and Y. Formulate a necessary and sufficient condition on the triple
(a,ﬂ,a%v) such that X and Y are conditionally independent given Z.

(e) Continuing from Part (d), let us now restrict to E[X?] = E[Y?] = 1, and use the notation p = E[XY].
This means that we can restrict to |a] <1 and |3] < 1. Moreover, let us always select o3, such that
E[Z?] =1 (unique choice). Find the unique choice of (c, 3) that attains the maximum in the estimation
problem

maxminE[(Z - f(X,Y))?), 3

where the inner minimum is over all measurable functions f(x,y).

Hint: Tt may be useful to introduce the notation a = E[XZ] and b =E[Y Z].

Problem 4: Missing Data

We are given real-valued data with a single missing sample :
X17X2aX37X47X57X67?7X8>X97"' (4)
where we assume that the data is wide-sense stationary with autocorrelation function Rx[k] = al¥l,

where 0 < aw < 1. We would like to find a meaningful estimate for the missing sample X7.

1. As a starting point, let us consider the estimate X, = wXg, where w is a real number. Find the
value of w so as to minimize the mean-squared error E[(X7; — X7)?], and determine the incurred
mean-squared error.

2. Now, consider the estimate X7 = w1 Xp + w2 Xs. Again, find the values of w; and ws so as to
minimize the mean-squared error E[(X7 — X7)?], and determine the incurred mean-squared error.



Problem 5: FIR Wiener Filter

Consider a (discrete-time) signal that satisfies the difference equation d[n] = 0.5d[n—1]+v[n], where v[n]
is a sequence of uncorrelated zero-mean unit-variance random variables. We observe z[n] = d[n] + wn],
where w[n] is a sequence of uncorrelated zero-mean random variables with variance 0.5.

(a) (you may skip this at first and do it later — it is conceptually straightforward) Show that for this
signal model, the autocorrelation function of the signal d[n] is

k]
Eld[n]d[n + k]| = i(;) ; (5)

and thus the autocorrelation function of the signal z[n] is
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Elz[n]z[n + k] = { (6)

oau;@‘

(b) We would like to find an (approximate) linear predictor d[n+3] using only the observations x[n], z[n—
1],z[n — 2],...,x[n — p]. Using the Wiener Filter framework, determine the optimal coefficients for the
linear predictor. Find the corresponding mean-squared error for your predictor.

(¢) We would like to find a linear denoiser d[n] using all of the samples {z[k]}?>__ . Find the filter
coefficients and give a formula for the incurred mean-squared error.

Problem 6: Tweedie’s Formula

For the special case where X = D + N, where N is Gaussian noise of mean zero and variance o2,

Tweedie’s formula says that the conditional mean (that is, the MMSE estimator) can be expressed as
E[D|X =] =2+ 0*¢/(x), (7)

where

¢(w) = 1 log fx () 0

where fx(z) denotes the marginal PDF of X. In this exercise, we derive this formula.

(a) Assume that fx|p(z|d) = =¥ f;(z) for some functions 1(d) and fo(z) and some constant «
(such that fx|p(z|d) is a valid PDF for every value of d). Define

fx ()
fo(x)’

where fx(z) is the marginal PDF of X, ie., fx(z)= [ fx p(2|0)fp(d)ds. With this, establish that

Az) =log

9)

E[D|IX =z] = a—/\(x). (10)

(b) Show that the case where X = D + N, where N is Gaussian noise of mean zero and variance o2, is

indeed of the form required in Part (a) by finding the corresponding v (d), fo(x), and «. Show that in
this case, we have
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and use this fact in combination with Part (a) to establish Tweedie’s formula.




