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Problem 1: MMSE Estimation

Consider the scenario where p(x|d) = de−dx, for x ≥ 0 (and zero otherwise), that is, the observed
data x is distributed according to an exponential with mean 1/d. Moreover, the desired variable d itself
is also exponentially distributed, with mean 1/µ .

(a) Find the MMSE estimator of d given x, and calculate the corresponding mean-squared error incurred
by this estimator.

(b) Find the MAP estimator of d given x.

Problem 2: Parameter Estimation and Fisher Information

The Fisher information J(Θ) for the family fθ(x), θ ∈ R is defined by

J(θ) = Eθ
(
∂fθ(X)/∂θ

fθ(X)

)2

=

∫
(f

′

θ)
2

fθ

Find the Fisher information for the following families:

(a) fθ(x) = N(0, θ) = 1√
2πθ

e−
x2

2θ

(b) fθ(x) = θe−θx, x ≥ 0

(c) What is the Cramèr Rao lower bound on Eθ(θ̂(X)− θ)2, where θ̂(X) is an unbiased estimator of
θ for (a) and (b)?
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Problem 3: Conditional Independence and MMSE

For simplicity, throughout this problem, all random variables are assumed to be zero-mean.
Remark: You may directly skip to Part (d), taking Equation (2) for granted (as a characterization of
conditional independence for Gaussians).

(a) Show that if X and Y are conditionally independent given Z, then

E[(X − E[X|Z])(Y − E[Y |Z])] = 0. (1)

(b) Recall that if X and Y are jointly Gaussian (zero-mean), then we have Y = αX + W, for some
constant α, where W is zero-mean Gaussian independent of X. Use this to prove the well-known fact
that for jointly Gaussian X and Y, if E[XY ] = 0, then X and Y are independent. Hint: Simply plug
in.

(c) Let X,Y, Z be jointly Gaussian (and zero-mean, as throughout this problem). Prove that if

E[(X − E[X|Z])(Y − E[Y |Z])] = 0, (2)

then X and Y are conditionally independent given Z. Hint: Make sure to solve Part (b) first. Recall
that for three jointly Gaussians X,Y, Z, we can always write Y = γX + δZ + V, for some constants γ
and δ, where V is Gaussian and independent of X and Z.

(d) Let X,Y, Z be jointly Gaussian (and zero-mean, as throughout this problem). Recall that we can
write Z = αX + βY + W, for some constants α and β, where W is Gaussian of some appropriate
variance σ2

W , independent of X and Y. Formulate a necessary and sufficient condition on the triple
(α, β, σ2

W ) such that X and Y are conditionally independent given Z.

(e) Continuing from Part (d), let us now restrict to E[X2] = E[Y 2] = 1, and use the notation ρ = E[XY ].
This means that we can restrict to |α| ≤ 1 and |β| ≤ 1. Moreover, let us always select σ2

W such that
E[Z2] = 1 (unique choice). Find the unique choice of (α, β) that attains the maximum in the estimation
problem

max
α,β

min
f

E[(Z − f(X,Y ))2], (3)

where the inner minimum is over all measurable functions f(x, y).

Hint: It may be useful to introduce the notation a = E[XZ] and b = E[Y Z].

Problem 4: Missing Data

We are given real-valued data with a single missing sample :

X1, X2, X3, X4, X5, X6, ?, X8, X9, . . . (4)

where we assume that the data is wide-sense stationary with autocorrelation function RX [k] = α|k|,
where 0 < α < 1. We would like to find a meaningful estimate for the missing sample X7.

1. As a starting point, let us consider the estimate X̂7 = wX6, where w is a real number. Find the
value of w so as to minimize the mean-squared error E[(X7 − X̂7)2], and determine the incurred
mean-squared error.

2. Now, consider the estimate X̂7 = w1X6 + w2X8. Again, find the values of w1 and w2 so as to
minimize the mean-squared error E[(X7 − X̂7)2], and determine the incurred mean-squared error.
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Problem 5: FIR Wiener Filter

Consider a (discrete-time) signal that satisfies the difference equation d[n] = 0.5d[n−1]+v[n], where v[n]
is a sequence of uncorrelated zero-mean unit-variance random variables. We observe x[n] = d[n] + w[n],
where w[n] is a sequence of uncorrelated zero-mean random variables with variance 0.5.

(a) (you may skip this at first and do it later — it is conceptually straightforward) Show that for this
signal model, the autocorrelation function of the signal d[n] is

E[d[n]d[n+ k]] =
4

3

(
1

2

)|k|
, (5)

and thus the autocorrelation function of the signal x[n] is

E[x[n]x[n+ k]] =

{
11
6 , for k = 0,
4
3

(
1
2

)|k|
, otherwise.

(6)

(b) We would like to find an (approximate) linear predictor d̂[n+3] using only the observations x[n], x[n−
1], x[n − 2], . . . , x[n − p]. Using the Wiener Filter framework, determine the optimal coefficients for the
linear predictor. Find the corresponding mean-squared error for your predictor.

(c) We would like to find a linear denoiser d̂[n] using all of the samples {x[k]}∞k=−∞. Find the filter
coefficients and give a formula for the incurred mean-squared error.

Problem 6: Tweedie’s Formula

For the special case where X = D + N, where N is Gaussian noise of mean zero and variance σ2,
Tweedie’s formula says that the conditional mean (that is, the MMSE estimator) can be expressed as

E [D|X = x] = x+ σ2`′(x), (7)

where

`′(x) =
d

dx
log fX(x), (8)

where fX(x) denotes the marginal PDF of X. In this exercise, we derive this formula.

(a) Assume that fX|D(x|d) = eαdx−ψ(d)f0(x) for some functions ψ(d) and f0(x) and some constant α
(such that fX|D(x|d) is a valid PDF for every value of d ). Define

λ(x) = log
fX(x)

f0(x)
, (9)

where fX(x) is the marginal PDF of X, i.e., fX(x) =
∫
fX|D(x|δ)fD(δ)dδ. With this, establish that

E [D|X = x] =
1

α

d

dx
λ(x). (10)

(b) Show that the case where X = D+N, where N is Gaussian noise of mean zero and variance σ2, is
indeed of the form required in Part (a) by finding the corresponding ψ(d), f0(x), and α. Show that in
this case, we have

f ′0(x)

f0(x)
= − x

σ2
, (11)

and use this fact in combination with Part (a) to establish Tweedie’s formula.
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