Midterm Exam

Surname: \qquad First name: \qquad Section: \qquad

PLEASE JUSTIFY ALL YOUR ANSWERS !!!

Exercise 1. (25 points)

Let $0<p, q, \alpha<1$, and let X be a Markov chain with state space $\mathcal{S}=\{0, \ldots, N\}$ and transition matrix P given by

$$
p_{01}=1-p_{00}=p \quad, \quad p_{N 0}=1-p_{N N}=q
$$

and

$$
p_{i j}= \begin{cases}q & \text { if } j=0 \\ \alpha(1-q) & \text { if } j=i+1 \\ (1-\alpha)(1-q) & \text { if } j=i\end{cases}
$$

for $0<i<N$.

a) Stationary distribution:

a1) Prove that the chain X admits a unique stationary distribution (without computing it).
a2) Compute this stationary distribution π as a function of p, q, and α.
Hint: Defining $\beta=\frac{\alpha(1-q)}{q+\alpha(1-q)}$ allows simplifying the notations.
a3) Are π_{0} and π_{N} decreasing, increasing or constant with respect to α ? (for p and q fixed)
Note: For this last question, you might try intuitive arguments if you did not complete the former computations.
b) Expected arrival time: For $i, j \in \mathcal{S}$, let us define

$$
T_{j}=\inf \left\{n \geq 1: X_{n}=j\right\} \quad \text { and } \quad \mu_{i j}=\mathbb{E}\left(T_{j} \mid X_{0}=i\right)
$$

b1) Compute $\mu_{N N}$.
b2) Express a relation between $\mu_{N N}$ and $\mu_{0 N}$, and deduce the value of $\mu_{0 N}$.
Hint: Start by writing $\mu_{N N}=\mathbb{E}\left(T_{N} \mid X_{0}=N\right)=\sum_{n \geq 1} n \mathbb{P}\left(T_{N}=n \mid X_{0}=N\right)=\ldots$ and then follow a procedure similar to what was already done in the course / in some exercises.
b3) Is $\mu_{0 N}$ decreasing, increasing or constant with respect to α ? (for p and q fixed)
Note: Again, for this last question, you might try intuitive arguments if you did not complete the former computations.

Exercise 2. (15 points)

Let $0<p, q<1$ be such that $p+q=1$ and let X be a Markov chain with state space $\mathcal{S}=$ $\{0,1,2,3,4\}$ and transition matrix P given by

$$
P=\frac{1}{2}\left(\begin{array}{lllll}
0 & p & q & q & p \\
p & 0 & p & q & q \\
q & p & 0 & p & q \\
q & q & p & 0 & p \\
p & q & q & p & 0
\end{array}\right)
$$

a) Prove that the chain X is ergodic and compute its stationary distribution π. Is detailed balance satisfied?
b) Compute the spectral gap γ of the chain X as a function of the parameter $0<p<1$.
c) For what value(s) of p is the spectral gap maximal? What is then the value of γ ? (please provide a numerical value!)
d) For the value of γ found in c), deduce an upper bound on $T_{\varepsilon}=\inf \left\{n \geq 1:\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}} \leq \varepsilon\right\}$.

Hints for part b):

- If $A=\operatorname{circ}\left(c_{0}, c_{1}, \ldots, c_{N-1}\right)$ is an $N \times N$ circulant matrix, then its eigenvalues are given by

$$
\lambda_{k}=\sum_{j=0}^{N-1} c_{j} \exp (2 \pi i j k / N) \quad k=0, \ldots, N-1
$$

(please note that with this notation, the eigenvalues λ_{0}, λ_{1}, etc. are not ordered.)

- We also have the following trigonometric equalities:

$$
\cos (-x)=\cos (-x) \quad \cos (\pi-x)=-\cos (x) \quad \cos (\pi / 5)=\frac{\sqrt{5}+1}{4} \quad \cos (2 \pi / 5)=\frac{\sqrt{5}-1}{4}
$$

Exercise 3. (20 points) The following are short "quiz problems" that do not require calculations, but only short answers (with justifications).

Quiz 3.1: Let P_{1} and P_{2} be $N_{1} \times N_{1}$ and $N_{2} \times N_{2}$ stochastic matrices (we assume $N_{1}, N_{2} \geq 3$). Let a_{M} denote the M dimensional column vector with all components equal to $a \geq 0$ and $0_{P \times Q}$ the $P \times Q$ all-zero matrix. Consider the following transition matrix:

$$
P=\left(\begin{array}{ccc}
P_{1} & 0_{N_{1}} & 0_{N_{1} \times N_{2}} \tag{1}\\
\frac{1}{4 N_{1}} 1_{N_{1}}^{T} & \frac{1}{2} & \frac{1}{4 N_{2}} 1_{N_{2}}^{T} \\
0_{N_{2} \times N_{1}} & 0_{N_{2}} & P_{2}
\end{array}\right)
$$

We will assume throughout that the matrix P_{1} defines an irreducible, aperiodic chain.
Hint: It is a good idea to picture the state graph and to separate the cases N_{2} even and odd.
a) Let the matrix P_{2} define the circular symmetric random walk with N_{2} states (in particular there are no self-loops). Give all equivalence classes of the chain with transition matrix P. Fully characterize each equivalence class: say if it is transient, null-recurrent or positive-recurrent / periodic or aperiodic / ergodic.
b) Does there exist a stationary distribution for the chain defined by P ? If yes, is it unique? If it is not unique, describe the structure of the whole set of stationary distributions.

Quiz 3.2: For the following two processes, justify whether the process $\left(Y_{n}, n \in \mathbb{N}\right)$ is Markov or not, and if it is a Markov chain, determine if it is ergodic or not.
a) Consider a random walk on the set $\{-1,0,1\}$ with transition matrix

$$
P=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

Let X_{n} be the position of this random walk at time n. The process $\left(Y_{n}, n \in \mathbb{N}\right)$ is defined as $Y_{0}=X_{0}$ and $Y_{n}=X_{n}-X_{n-1}$ for $n \geq 1$.
b) Consider a sequence of i.i.d. random variables X_{1}, \ldots, X_{n} such that

$$
\mathbb{P}\left(X_{1}=0\right)=\frac{1}{4}, \mathbb{P}\left(X_{1}=1\right)=\frac{1}{2}, \mathbb{P}\left(X_{1}=2\right)=\frac{1}{4}
$$

The process $\left(Y_{n}, n \in \mathbb{N}\right)$ is defined as $Y_{0}=0, Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ for $n \geq 1$.
Quiz 3.3: For each statement below, tell whether it is true or false, and provide a justification if the answer is "true / a counter-example if the answer is "false.
a) Consider an irreducible Markov chain and let $i \neq j$ be two states in this chain. Then there exists $n \in \mathbb{N}$ such that $p_{i j}^{(n)}>0$ and $p_{j i}^{(n)}>0$.
b) Let P be the transition matrix of a Markov chain. If $P^{n} \rightarrow I$, then all states are recurrent.

Note: A sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ of matrices converges to the matrix A, which is denoted by $A_{n} \rightarrow A$, if $\left(A_{n}\right)_{i j} \rightarrow A_{i j}$ as $n \rightarrow \infty$, for all i, j.

