Markov Chains and Algorithmic Applications EPFL - Fall Semester 2021-2022
Midterm Exam: Solutions

1. al) The chain has a finite number of states, so to prove the existence of a unique stationary
distribution, as well as its uniqueness, it is sufficient to show that it is also irreducible. To prove
irreduciblity, we show that state 0 communicates with every state ¢ € {1,..., N} by noting that
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a2) First, by using the definition of the stationary distribution for state 0 we have
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Next, we have
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For 1 < j < N, we obtain
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Finally, deﬁningﬁ:%,we have for 0 < j < N:
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[Note that mg can also be found at the end by using the normalization condition Z;V:O = 1]

a3) m does not depend on « (a possible intuition for this is that if we consider the set of states
{1,...,N} as a “super-state”, then the chain simplifies to a two-state chain with transition prob-
abilities p in one direction and ¢ in the other direction). On the contrary, as § is an increasing
function of a;, we deduce that 7y is also an increasing function of «, which is a sensible result, as
the probability to move up in the chain grows with a.



1. b1) By the theorem seen in class, uyy = uny = % = @M+l p%.

b2) Following the hint, we expand the expectation as

pny =E(Ty|Xo = N) =Y nP(Ty =n|X, = N)

n=1

which we can rewrite as (inserting the events X; = j for 0 < j < N)
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b3) Using the two results, we obtain:
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It is therefore decreasing with respect to 3, and also decreasing with respect to «. Indeed, when «
is the largest, then the chain has the highest chance to reach quickly N starting from state O.

2. a) The chain has a finite number of states and is clearly irreducible and aperiodic, so the chain
is ergodic. In addition, P is doubly stochastic, so the corresponding stationary distribution 7 is
uniform. P is also symmetric, which implies in this case that detailed balance is satisfied.

b) The computation of the eigenvalues gives A\, = p cos(27k/5) + ¢ cos(4nk/5) for k € {0,...,4},
so Ag =1,
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The spectral gap ~y is therefore given by
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c) From part b), it is clear that « is maximal and takes the value % when p = q = % (and this is
also intuitively the situation where the chain with transition matrix P is the most mixing).



d) By the bound given in class, we have: ||PJ — 7|ty < é exp(—3n/4), so
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3.1.a) The state space consists of S; U{0} US, with S; containing N; states and Sy containing No
states.

Irreducible equivalence classes are S, {0} and Ss.
The class {0} is always transient.

The class &7 is always irreducible, aperiodic and finite so positive-recurrent and hence also ergodic.
For the class Ss it is always irreducible and finite hence always positive-recurrent.

If N> is even it is periodic of period 2 hence not ergodic.
If Ny is odd it is aperiodic and hence also ergodic.

3.1.b) Let (1) be the stationary distribution of P (since P is irreducible and finite hence pos-
rec the stationary distr exists). Let 7(2) the stationary distribution of Ps (same justification for

D for i € S m o=

existence). We thus have the stationary distribution myp = 0 and m; = amn;

(1-— a)7r1(2) for i € Sy with any 0 < a < 1. It is not unique.

Another way to express this is to define frl-(l) = 7TZ-(1) for ¢ € &1 and frlgl) =0 for i ¢ Sy, 7?1(2) = W§2)
for i € Sy and 7?52) =0 for i ¢ Sy, and say that 7 = a7 4+ (1 — a)7®? the convex combination.
3.2.a) The process (Y,,n € N) is not a Markov chain. Y, indicates the move to the left, right, or
no move. Since the random walk is on a bounded set, the number of consecutive moves to the right
cannot exceed a certain number.

PYp=1Yy1=1Y, 0=1)=0%P(Y, =1|Y,_1 =1,Y,_ =0)

3.2.b) The process (Y, n € N) is a Markov chain since Y,, can be determined only by Y;,_1, X,,.
But, it is not an ergodic chain because the chain is not irreducible (Y = 2 is an absorbing state).

3.3.a) False. If the chain is periodic, the statement does not hold for all 4, j. For example, in the
following chain pgg) is positive only if n is of the form 3k + 1, but pgf) is positive only if n is of the

form 3k + 2.
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3.3.b) True. Suppose that there exists a transient state, i. Then ) pgl) < 00 80 pﬁ?) — 0, but
: (n)
by the assumption made, p;;” — 1.

NB: The assumption made actually implies that P = I, as P* P = P"*l to taking the limit
n — 0o on both sides, we get P = I.



