Midterm Exam: Solutions

1. a1) The chain has a finite number of states, so to prove the existence of a unique stationary distribution, as well as its uniqueness, it is sufficient to show that it is also irreducible. To prove irreduciblity, we show that state 0 communicates with every state $i \in\{1, \ldots, N\}$ by noting that

$$
p_{i 0}^{(1)}=q>0 \quad \text { and } \quad p_{0 i}^{(i)}=p \alpha^{i-1}(1-q)^{i-1}>0
$$

a2) First, by using the definition of the stationary distribution for state 0 we have

$$
\pi_{0}=\sum_{i=0}^{N} \pi_{i} p_{i 0}=(1-p) \pi_{0}+q \sum_{i=1}^{N} \pi_{i}=(1-p) \pi_{0}+q\left(1-\pi_{0}\right)
$$

which implies that

$$
\pi_{0}=\frac{q}{p+q}
$$

Next, we have

$$
\pi_{1}=\pi_{0} p v+\pi_{1}(1-\alpha)(1-q) \quad \text { so } \quad \pi_{1}=\frac{p}{q+\alpha(1-q)} \pi_{0}
$$

For $1<j<N$, we obtain

$$
\pi_{j}=\pi_{j-1} \alpha(1-q)+\pi_{j}(1-\alpha)(1-q) \quad \text { so } \quad \pi_{j}=\frac{\alpha(1-q)}{q+\alpha(1-q)} \pi_{j-1}
$$

And for $j=N$:

$$
\pi_{N}=\pi_{N-1} \alpha(1-q)+\pi_{N}(1-q) \quad \text { so } \quad \pi_{N}=\frac{\alpha(1-q)}{q} \pi_{N-1}
$$

Finally, defining $\beta=\frac{\alpha(1-q)}{q+\alpha(1-q)}$, we have for $0<j<N$:

$$
\pi_{j}=\beta^{j-1} \frac{1}{q+\alpha(1-q)} \frac{p q}{p+q} \quad \text { and } \quad \pi_{N}=\beta^{N-1} \frac{p}{p+q}
$$

[Note that π_{0} can also be found at the end by using the normalization condition $\sum_{j=0}^{N} \pi_{j}=1$.]
a3) π_{0} does not depend on α (a possible intuition for this is that if we consider the set of states $\{1, \ldots, N\}$ as a "super-state", then the chain simplifies to a two-state chain with transition probabilities p in one direction and q in the other direction). On the contrary, as β is an increasing function of α, we deduce that π_{N} is also an increasing function of α, which is a sensible result, as the probability to move up in the chain grows with α.

1. b1) By the theorem seen in class, $\mu_{N N}=\mu_{N}=\frac{1}{\pi_{N}}=\beta^{-N+1} \frac{p+q}{p}$.
b2) Following the hint, we expand the expectation as

$$
\mu_{N N}=\mathbb{E}\left(T_{N} \mid X_{0}=N\right)=\sum_{n=1}^{\infty} n \mathbb{P}\left(T_{N}=n \mid X_{0}=N\right)
$$

which we can rewrite as (inserting the events $X_{1}=j$ for $0 \leq j \leq N$)

$$
\begin{aligned}
\mu_{N N} & =\sum_{n=1}^{\infty} \sum_{j=0}^{N} n \mathbb{P}\left(T_{N}=n, X_{1}=j \mid X_{0}=N\right) \\
& =\sum_{j=0}^{N} p_{N j} \sum_{n=1}^{\infty} n \mathbb{P}\left(T_{N}=n \mid X_{1}=j\right) \\
& =p_{N N}+p_{N 0} \sum_{n=2}^{\infty} n \mathbb{P}\left(T_{N}=n \mid X_{1}=0\right) \\
& =p_{N N}+p_{N 0} \sum_{m=1}^{\infty}(1+m) \mathbb{P}\left(T_{N}=m \mid X_{0}=0\right) \\
& =p_{N N}+p_{N 0}+p_{N 0} \mu_{0 N}=1+q \mu_{0 N}
\end{aligned}
$$

b3) Using the two results, we obtain:

$$
\mu_{0 N}=\beta^{-N+1} \frac{p+q}{p q}-\frac{1}{q}
$$

It is therefore decreasing with respect to β, and also decreasing with respect to α. Indeed, when α is the largest, then the chain has the highest chance to reach quickly N starting from state 0 .
2. a) The chain has a finite number of states and is clearly irreducible and aperiodic, so the chain is ergodic. In addition, P is doubly stochastic, so the corresponding stationary distribution π is uniform. P is also symmetric, which implies in this case that detailed balance is satisfied.
b) The computation of the eigenvalues gives $\lambda_{k}=p \cos (2 \pi k / 5)+q \cos (4 \pi k / 5)$ for $k \in\{0, \ldots, 4\}$, so $\lambda_{0}=1$,

$$
\lambda_{1}=\lambda_{4}=p \cos (2 \pi / 5)+q \cos (4 \pi / 5)=p \frac{\sqrt{5}-1}{4}-q \frac{\sqrt{5}+1}{4}=(2 p-1) \frac{\sqrt{5}}{4}-\frac{1}{4}
$$

and

$$
\lambda_{2}=\lambda_{3}=p \cos (4 \pi / 5)+q \cos (8 \pi / 5)=-p \frac{\sqrt{5}+1}{4}+q \frac{\sqrt{5}-1}{4}=(1-2 p) \frac{\sqrt{5}}{4}-\frac{1}{4}
$$

The spectral gap γ is therefore given by

$$
\gamma=\frac{3}{4}-|2 p-1| \frac{\sqrt{5}}{4}
$$

c) From part b), it is clear that γ is maximal and takes the value $\frac{3}{4}$ when $p=q=\frac{1}{2}$ (and this is also intuitively the situation where the chain with transition matrix P is the most mixing).
d) By the bound given in class, we have: $\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{\sqrt{5}}{2} \exp (-3 n / 4)$, so

$$
T_{\varepsilon} \leq \frac{4}{3} \log \left(\frac{\sqrt{5}}{2 \varepsilon}\right)
$$

3.1.a) The state space consists of $\mathcal{S}_{1} \cup\{0\} \cup \mathcal{S}_{2}$ with \mathcal{S}_{1} containing N_{1} states and \mathcal{S}_{2} containing N_{2} states.

Irreducible equivalence classes are $\mathcal{S}_{1},\{0\}$ and \mathcal{S}_{2}.
The class $\{0\}$ is always transient.
The class \mathcal{S}_{1} is always irreducible, aperiodic and finite so positive-recurrent and hence also ergodic. For the class \mathcal{S}_{2} it is always irreducible and finite hence always positive-recurrent.

If N_{2} is even it is periodic of period 2 hence not ergodic.
If N_{2} is odd it is aperiodic and hence also ergodic.
3.1.b) Let $\pi^{(1)}$ be the stationary distribution of P_{1} (since P_{1} is irreducible and finite hence posrec the stationary distr exists). Let $\pi^{(2)}$ the stationary distribution of P_{2} (same justification for existence). We thus have the stationary distribution $\pi_{0}=0$ and $\pi_{i}=\alpha \pi_{i}^{(1)}$ for $i \in \mathcal{S}_{1} \pi_{i}=$ $(1-\alpha) \pi_{i}^{(2)}$ for $i \in \mathcal{S}_{2}$ with any $0 \leq \alpha \leq 1$. It is not unique.
Another way to express this is to define $\tilde{\pi}_{i}^{(1)}=\pi_{i}^{(1)}$ for $i \in \mathcal{S}_{1}$ and $\tilde{\pi}_{i}^{(1)}=0$ for $i \notin \mathcal{S}_{1}, \tilde{\pi}_{i}^{(2)}=\pi_{i}^{(2)}$ for $i \in \mathcal{S}_{2}$ and $\tilde{\pi}_{i}^{(2)}=0$ for $i \notin \mathcal{S}_{2}$, and say that $\pi=\alpha \tilde{\pi}^{(1)}+(1-\alpha) \tilde{\pi}^{(2)}$ the convex combination.
3.2.a) The process $\left(Y_{n}, n \in \mathbb{N}\right)$ is not a Markov chain. Y_{n} indicates the move to the left, right, or no move. Since the random walk is on a bounded set, the number of consecutive moves to the right cannot exceed a certain number.

$$
P\left(Y_{n}=1 \mid Y_{n-1}=1, Y_{n-2}=1\right)=0 \neq P\left(Y_{n}=1 \mid Y_{n-1}=1, Y_{n-2}=0\right)
$$

3.2.b) The process $\left(Y_{n}, n \in \mathbb{N}\right)$ is a Markov chain since Y_{n} can be determined only by Y_{n-1}, X_{n}. But, it is not an ergodic chain because the chain is not irreducible ($Y=2$ is an absorbing state).
3.3.a) False. If the chain is periodic, the statement does not hold for all i, j. For example, in the following chain $p_{12}^{(n)}$ is positive only if n is of the form $3 k+1$, but $p_{21}^{(n)}$ is positive only if n is of the form $3 k+2$.

3.3.b) True. Suppose that there exists a transient state, i. Then $\sum_{n} p_{i i}^{(n)}<\infty$ so $p_{i i}^{(n)} \rightarrow 0$, but by the assumption made, $p_{i i}^{(n)} \rightarrow 1$.
NB: The assumption made actually implies that $P=I$, as $P^{n} P=P^{n+1}$, to taking the limit $n \rightarrow \infty$ on both sides, we get $P=I$.

