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Midterm Exam: Solutions

1. a1) The chain has a finite number of states, so to prove the existence of a unique stationary
distribution, as well as its uniqueness, it is sufficient to show that it is also irreducible. To prove
irreduciblity, we show that state 0 communicates with every state i ∈ {1, ..., N} by noting that

p
(1)
i0 = q > 0 and p

(i)
0i = pαi−1(1− q)i−1 > 0

a2) First, by using the definition of the stationary distribution for state 0 we have

π0 =

N∑
i=0

πipi0 = (1− p)π0 + q

N∑
i=1

πi = (1− p)π0 + q(1− π0)

which implies that

π0 =
q

p+ q

Next, we have

π1 = π0 pv + π1 (1− α) (1− q) so π1 =
p

q + α(1− q)
π0

For 1 < j < N , we obtain

πj = πj−1 α (1− q) + πj (1− α) (1− q) so πj =
α(1− q)

q + α(1− q)
πj−1

And for j = N :

πN = πN−1 α (1− q) + πN (1− q) so πN =
α(1− q)

q
πN−1

Finally, defining β = α(1−q)
q+α(1−q) , we have for 0 < j < N :

πj = βj−1
1

q + α(1− q)
pq

p+ q
and πN = βN−1

p

p+ q

[Note that π0 can also be found at the end by using the normalization condition
∑N

j=0 πj = 1.]

a3) π0 does not depend on α (a possible intuition for this is that if we consider the set of states
{1, . . . , N} as a “super-state”, then the chain simplifies to a two-state chain with transition prob-
abilities p in one direction and q in the other direction). On the contrary, as β is an increasing
function of α, we deduce that πN is also an increasing function of α, which is a sensible result, as
the probability to move up in the chain grows with α.

1



1. b1) By the theorem seen in class, µNN = µN = 1
πN

= β−N+1 p+q
p .

b2) Following the hint, we expand the expectation as

µNN = E(TN |X0 = N) =
∞∑
n=1

nP(TN = n|X0 = N)

which we can rewrite as (inserting the events X1 = j for 0 ≤ j ≤ N)

µNN =

∞∑
n=1

N∑
j=0

nP(TN = n,X1 = j|X0 = N)

=
N∑
j=0

pNj

∞∑
n=1

nP(TN = n|X1 = j)

= pNN + pN0

∞∑
n=2

nP(TN = n|X1 = 0)

= pNN + pN0

∞∑
m=1

(1 +m)P(TN = m|X0 = 0)

= pNN + pN0 + pN0 µ0N = 1 + q µ0N

b3) Using the two results, we obtain:

µ0N = β−N+1 p+ q

pq
− 1

q

It is therefore decreasing with respect to β, and also decreasing with respect to α. Indeed, when α
is the largest, then the chain has the highest chance to reach quickly N starting from state 0.

2. a) The chain has a finite number of states and is clearly irreducible and aperiodic, so the chain
is ergodic. In addition, P is doubly stochastic, so the corresponding stationary distribution π is
uniform. P is also symmetric, which implies in this case that detailed balance is satisfied.

b) The computation of the eigenvalues gives λk = p cos(2πk/5) + q cos(4πk/5) for k ∈ {0, . . . , 4},
so λ0 = 1,

λ1 = λ4 = p cos(2π/5) + q cos(4π/5) = p

√
5− 1

4
− q
√

5 + 1

4
= (2p− 1)

√
5

4
− 1

4

and

λ2 = λ3 = p cos(4π/5) + q cos(8π/5) = −p
√

5 + 1

4
+ q

√
5− 1

4
= (1− 2p)

√
5

4
− 1

4

The spectral gap γ is therefore given by

γ =
3

4
− |2p− 1|

√
5

4

c) From part b), it is clear that γ is maximal and takes the value 3
4 when p = q = 1

2 (and this is
also intuitively the situation where the chain with transition matrix P is the most mixing).
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d) By the bound given in class, we have: ‖Pn0 − π‖TV ≤
√
5
2 exp(−3n/4), so

Tε ≤
4

3
log

(√
5

2ε

)

3.1.a) The state space consists of S1 ∪{0}∪S2 with S1 containing N1 states and S2 containing N2

states.

Irreducible equivalence classes are S1, {0} and S2.

The class {0} is always transient.

The class S1 is always irreducible, aperiodic and finite so positive-recurrent and hence also ergodic.
For the class S2 it is always irreducible and finite hence always positive-recurrent.

If N2 is even it is periodic of period 2 hence not ergodic.

If N2 is odd it is aperiodic and hence also ergodic.

3.1.b) Let π(1) be the stationary distribution of P1 (since P1 is irreducible and finite hence pos-
rec the stationary distr exists). Let π(2) the stationary distribution of P2 (same justification for

existence). We thus have the stationary distribution π0 = 0 and πi = απ
(1)
i for i ∈ S1 πi =

(1− α)π
(2)
i for i ∈ S2 with any 0 ≤ α ≤ 1. It is not unique.

Another way to express this is to define π̃
(1)
i = π

(1)
i for i ∈ S1 and π̃

(1)
i = 0 for i /∈ S1, π̃(2)i = π

(2)
i

for i ∈ S2 and π̃
(2)
i = 0 for i /∈ S2, and say that π = απ̃(1) + (1− α)π̃(2) the convex combination.

3.2.a) The process (Yn, n ∈ N) is not a Markov chain. Yn indicates the move to the left, right, or
no move. Since the random walk is on a bounded set, the number of consecutive moves to the right
cannot exceed a certain number.

P (Yn = 1|Yn−1 = 1, Yn−2 = 1) = 0 6= P (Yn = 1|Yn−1 = 1, Yn−2 = 0)

3.2.b) The process (Yn, n ∈ N) is a Markov chain since Yn can be determined only by Yn−1, Xn.
But, it is not an ergodic chain because the chain is not irreducible (Y = 2 is an absorbing state).

3.3.a) False. If the chain is periodic, the statement does not hold for all i, j. For example, in the

following chain p
(n)
12 is positive only if n is of the form 3k+ 1, but p

(n)
21 is positive only if n is of the

form 3k + 2.

3.3.b) True. Suppose that there exists a transient state, i. Then
∑

n p
(n)
ii < ∞ so p

(n)
ii → 0, but

by the assumption made, p
(n)
ii → 1.

NB: The assumption made actually implies that P = I, as Pn P = Pn+1, to taking the limit
n→∞ on both sides, we get P = I.
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