Introduction to Differentiable Manifolds

EPFL – Fall 2022 F. Carocci, M. Cossarini Exercise Series 13 - Exterior derivative, Properties of Integrals 2022– 12–13

Exercise 13.1 (Properties of the integral). Let M be an oriented differentiable *n*-manifold and let ω , η be two continuous, compactly supported *n*-forms on M. Prove the following:

(a) Linearity: If $a, b \in \mathbb{R}$, then

$$\int_{M} (a\,\omega + b\,\eta) = a \int_{M} \omega + b \int_{M} \eta.$$

- (b) Positivity: If $\operatorname{sgn}(\omega|_p)$ coincides with the orientation of M at every point $p \in M$ where $\omega|_p \neq 0$, then $\int_M \omega \geq 0$, and the inequality is strict unless ω is identically zero.
- (c) Diffeomorphism invariance: If $f: N \to M$ is an diffeomorphism of constant sign $\operatorname{sgn}(f) = \pm 1$ (i.e. f is either orientation preserving or orientation reversing), then

$$\int_N f^* \omega = \operatorname{sgn} f \cdot \int_M \omega.$$

(d) Orientation reversal: If -M denotes M with the reversed orientation, then

$$\int_{-M} \omega = -\int_{M} \omega.$$

Exercise 13.2. Prove that a continuous k-form is determined by the value of its integrals (Proposition 7.3.12). *Hint:* Use a chart to move the problem to \mathbb{R}^n , then integrate on small pieces of coordinate planes.

Exercise 13.3.* Let $f: M \to N$ be a smooth map between smooth manifolds. Then for all $\omega \in \Omega^k(M)$ we have

$$f^*(\mathrm{d}\omega) = \mathrm{d}(f^*\omega).$$

Exercise 13.4.* Let (x, y, z) be the standard coordinates on \mathbb{R}^3 and let (v, w) be the standard coordinates on \mathbb{R}^2 . Let $\phi : \mathbb{R}^3 \to \mathbb{R}^2$ be defined as $\phi(x, y, z) = (x + z, xy)$. Let $\alpha = e^w dv + v dw$ and $\beta = v dv \wedge dw$ be 2-forms on \mathbb{R}^2 . Compute the following differential forms:

$$\alpha \wedge \beta, \quad \phi^*(\alpha), \quad \phi^*(\beta), \quad \phi^*(\alpha) \wedge \phi^*(\beta).$$

Exercise 13.5.* Compute the exterior derivative of the following forms:

- (a) on $\mathbb{R}^2 \setminus \{0\}$ $\theta = \frac{x \, \mathrm{d}y y \, \mathrm{d}x}{x^2 + y^2}$.
- (b) on \mathbb{R}^3 , $\varphi = \cos(x) \, \mathrm{d}y \wedge \mathrm{d}z$.
- (c) on $\mathbb{R}^3 \omega = A \,\mathrm{d}x + B \,\mathrm{d}y + C \,\mathrm{d}z$.