1. (15 points)

- (a) Define the notion of a C[∞] cutoff function (fonction plateau) in a neighborhood of a point p in a smooth manifold M.
 In the rest of this problem, we assume without proof that cutoff functions exist in the neighborhood of every point in M.
- (b) Prove that $C^{\infty}(M)$ is a vector space and that $\dim(C^{\infty}(M)) = \infty$.
- (c) Let $A, B \subset M$ be two nonempty compact subsets of M. Show that if $A \cap B = \emptyset$, then there exists a function $f \in C^{\infty}(M)$ such that $f \equiv 1$ on A and $f \equiv 0$ on B.

2. (10 points)

- (a) Define the notion of a smooth map between two C^{∞} manifolds.
- (b) State the constant rank theorem.
- (c) Explain what are immersions, embeddings and submersions.
- (d) Prove that all submersions are open maps.

3. (20 points)

- (a) Explain what is the tangent space at a point of a differentiable manifolds.
- (b) What is its dimension? Justify your answer carefully!
- (c) How can we associate a base of $T_p(M)$ to a local chart for M on a neighborhood of p?
- (d) Write down and prove the formula for the change of base on $T_p(M)$ when the underlying local chart on M changes.

4. (15 points)

- (a) Give the definition of the exterior derivative d of a differential form.
- (b) State four properties of d.
- (c) Prove that for all forms α of degree 1, we have

$$d\alpha(X,Y) = X(\alpha(Y)) - Y(\alpha(X)) - \alpha([X,Y]).$$

5. (10 points)

Consider the smooth function $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = x^2 - y^2.$$

For which values of $t \in \mathbb{R}$, the level set $f^{-1}(t)$ is a smooth submanifold of \mathbb{R}^2 ?

6. (15 points)

Consider the smooth manifold $\mathbb{R}^2 \setminus \{0\}$ with its standard structure, and define the vector fields

$$V = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}, \quad W = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}.$$

- (a) Compute the bracket [V, W].
- (b) What is the value of [V, W] in polar coordinates ?

7. (15 points)

Let us denote by x, y, z the cartesian coordinates on \mathbb{R}^3 and by u, v the cartesian coordinates on \mathbb{R}^2 , and consider the map $f : \mathbb{R}^2 \to \mathbb{R}^3$ given by $\phi(u, v) = (u^2, uv, v^2)$. Compute the pullback of the following differential forms:

$$\phi^{\star}(dx), \quad \phi^{\star}(dy), \quad \phi^{\star}(dz), \quad \phi^{\star}(dx \wedge dy \wedge dz).$$

8. Question facultative (bonus max. 20 points)

Let $U \subset \mathbb{R}^2$ be an open set on the Euclidean plane. We define an application $*: \Omega^1(U) \to \Omega^1(U)$ by

$$*(a(x,y)dx + b(x,y)dy) = b(x,y)dx - a(x,y)dy.$$

- (a) What is $*(*\omega)$?
- (b) Show that for all vectors $X \in T_p U$ and all forms $\omega \in \Omega^1(U)$ we have

$$(*\omega)(X) = \omega(\mathbf{J}X)$$

where **J** is the rotation operator of angle $+\pi/2$ in the positive sense, that is

$$\mathbf{J}\left(\frac{\partial}{\partial x}\right) = \frac{\partial}{\partial y}, \qquad \mathbf{J}\left(\frac{\partial}{\partial y}\right) = -\frac{\partial}{\partial x}$$

- (c) For a function $f \in C^{\infty}(U, \mathbb{R})$, compute d * df. How do we call a function such that d * df = 0?
- (d) Let $f, g \in C^{\infty}(U, \mathbb{R})$, show that the function $h \in C^{\infty}(U, \mathbb{C})$ defined by

$$h = f + \sqrt{-1}g$$

is holomorphic if and only if df = *dg. Conclude that, in this case, d * df = d * dg = 0.

Remark: the map * defined here is named the Hodge star operator for differential forms in the plane.