1. (15 points)
(a) Define the notion of a C^{∞} cutoff function (fonction plateau) in a neighborhood of a point p in a smooth manifold M.
In the rest of this problem, we assume without proof that cutoff functions exist in the neighborhood of every point in M.
(b) Prove that $C^{\infty}(M)$ is a vector space and that $\operatorname{dim}\left(C^{\infty}(M)\right)=\infty$.
(c) Let $A, B \subset M$ be two nonempty compact subsets of M. Show that if $A \cap B=\emptyset$, then there exists a function $f \in C^{\infty}(M)$ such that $f \equiv 1$ on A and $f \equiv 0$ on B.
2. (10 points)
(a) Define the notion of a smooth map between two C^{∞} manifolds.
(b) State the constant rank theorem.
(c) Explain what are immersions, embeddings and submersions.
(d) Prove that all submersions are open maps.
3. (20 points)
(a) Explain what is the tangent space at a point of a differentiable manifolds.
(b) What is its dimension? Justify your answer carefully!
(c) How can we associate a base of $T_{p}(M)$ to a local chart for M on a neighborhood of p ?
(d) Write down and prove the formula for the change of base on $T_{p}(M)$ when the underlying local chart on M changes.
4. (15 points)
(a) Give the definition of the exterior derivative d of a differential form.
(b) State four properties of d.
(c) Prove that for all forms α of degree 1 , we have

$$
d \alpha(X, Y)=X(\alpha(Y))-Y(\alpha(X))-\alpha([X, Y]) .
$$

5. (10 points)

Consider the smooth function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=x^{2}-y^{2} .
$$

For which values of $t \in \mathbb{R}$, the level set $f^{-1}(t)$ is a smooth submanifold of \mathbb{R}^{2} ?
6. (15 points)

Consider the smooth manifold $\mathbb{R}^{2} \backslash\{0\}$ with its standard structure, and define the vector fields

$$
V=\frac{x}{\sqrt{x^{2}+y^{2}}} \frac{\partial}{\partial x}+\frac{y}{\sqrt{x^{2}+y^{2}}} \frac{\partial}{\partial y}, \quad W=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y} .
$$

(a) Compute the bracket $[V, W]$.
(b) What is the value of $[V, W]$ in polar coordinates ?
7. (15 points)

Let us denote by x, y, z the cartesian coordinates on \mathbb{R}^{3} and by u, v the cartesian coordinates on \mathbb{R}^{2}, and consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $\phi(u, v)=\left(u^{2}, u v, v^{2}\right)$. Compute the pullback of the following differential forms:

$$
\phi^{\star}(d x), \quad \phi^{\star}(d y), \quad \phi^{\star}(d z), \quad \phi^{\star}(d x \wedge d y \wedge d z)
$$

8. Question facultative (bonus max. 20 points)

Let $U \subset \mathbb{R}^{2}$ be an open set on the Euclidean plane. We define an application $*: \Omega^{1}(U) \rightarrow \Omega^{1}(U)$ by

$$
*(a(x, y) d x+b(x, y) d y)=b(x, y) d x-a(x, y) d y
$$

(a) What is $*(* \omega)$?
(b) Show that for all vectors $X \in T_{p} U$ and all forms $\omega \in \Omega^{1}(U)$ we have

$$
(* \omega)(X)=\omega(\mathbf{J} X)
$$

where \mathbf{J} is the rotation operator of angle $+\pi / 2$ in the positive sense, that is

$$
\mathbf{J}\left(\frac{\partial}{\partial x}\right)=\frac{\partial}{\partial y}, \quad \mathbf{J}\left(\frac{\partial}{\partial y}\right)=-\frac{\partial}{\partial x}
$$

(c) For a function $f \in C^{\infty}(U, \mathbb{R})$, compute $d * d f$. How do we call a function such that $d * d f=0$?
(d) Let $f, g \in C^{\infty}(U, \mathbb{R})$, show that the function $h \in C^{\infty}(U, \mathbb{C})$ defined by

$$
h=f+\sqrt{-1} g
$$

is holomorphic if and only if $d f=* d g$. Conclude that, in this case, $d * d f=d * d g=0$.

Remark: the map * defined here is named the Hodge star operator for differential forms in the plane.

