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Last name First name SCIPER Nr Points

Problem 1: Exponential Families and Maximum Entropy 1

Let Y = X1 +X2 . Find the maximum entropy of Y under the constraint E[X2
1 ] = P1 , E[X2

2 ] = P2 :

(a) If X1 and X2 are independent.

(b) If X1 and X2 are allowed to be dependent.

Solution 1. (a) If X1 and X2 are independent,

Var[Y ] = Var[X1 +X2] = Var[X1] + Var[X2] ≤ E[X2
1 ] + E[X2

2 ] = P1 + P2 (1)

where equality holds when E[X1] = E[X2] = 0 . Thus we have

max
f(y)

h(Y ) ≤ 1

2
log(2πe(P1 + P2)) (2)

where equality holds when Y is Gaussian with zero mean, which requires X1 and X2 to be independent
and Gaussian with zeros mean.

(b) For dependent X1 and X2 , we have

Var(Y ) ≤ E[Y 2] = E[(X1 +X2)2] = E[X2
1 ] + E[X2

2 ] + 2E[X1X2] ≤ (
√
P1 +

√
P2)2 (3)

where the first equality holds when E[Y ] = E[X1] + E[X2] = 0 , and the send equality holds when

X2 =
√

P2

P1
X1 . Hence, maxf(y) h(Y ) ≤ 1

2 log(2πe(
√
P1 +

√
P2)2) , where equality holds when Y is

Gaussian with zero mean, which requires X1 and X2 to be Gaussian with zero mean and X2 =
√

P2

P1
X1 .

Problem 2: Exponential Families and Maximum Entropy 2

Find the maximum entropy density f , defined for x ≥ 0 , satisfying E[X] = α1 , E[lnX] = α2 . That
is, maximize −

∫
f ln f subject to

∫
xf(x)dx = α1 ,

∫
(lnx)f(x)dx = α2 , where the integral is over

0 ≤ x <∞ . What family of densities is this?

Solution 2. The maximum entropy distribution subject to constraints∫
xf(x)dx = α1 (4)
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and ∫
(lnx)f(x)dx = α2 (5)

is of the form

f(x) = eλ0+λ1x+λ2 ln x = cxλ2eλ1x (6)

which is of the form of a Gamma distribution. The constants should be chosen so as to satisfy the
constraints. We need to solve the following equations∫ ∞

0

f(x)dx =

∫ ∞
0

cxλ2eλ1xdx = 1 (7)∫ ∞
0

xf(x)dx =

∫ ∞
0

cxλ2+1eλ1xdx = α1 (8)∫ ∞
0

(lnx)f(x)dx =

∫ ∞
0

cxλ2eλ1x lnxdx = α2 (9)

Thus, the Gamma distributions f(x) = 1
Γ(k)θk

xk−1e−
x
θ with

E[X] = kθ = α1 E[lnX] = ψ(k) + ln(θ) = α2 (10)

is the exponential family we want.

Problem 3: Exponential Families and Maximum Entropy 3

For t > 0 , consider a family of distributions supported on [t,+∞] such that E[lnX] = 1
α + ln t ,

α > 0 .

1. What is the parametric form of a maximum entropy distribution satisfying the constraint on the
support and the mean?

2. Find the exact form of the distribution.

Solution 3. (i) The maximum entropy distribution has the parametric form eθ ln x−A(θ) = xθe−A(θ) .

(ii) Let us first find the value of A(θ) from the density constraint
∫∞
t
xθe−A(θ)dx = 1 . This gives

e−A(θ) = − θ+1
tθ+1 .

Next we find θ from the mean constraint
∫∞
t
xθe−A(θ) lnx dx = 1

α+ln t . This gives tθ+1((θ+1) ln t−1)
tθ+1(θ+1)

=

ln t− 1
θ+1 = 1

α + ln t and therefore θ = −(α+ 1) . The resulting form of the distribution is

p(x) =
αtα

xα+1

.

Problem 4: Exponential Families and Maximum Entropy 4: I -projections

Let P denote the zero-mean and unit-variance Gaussian distribution. Assume that you are given N
iid samples distributed according to P and let P̂N be the empirical distribution.

Let Π denote the set of distributions with second moment E[X2] = 2 . We are interested in

lim
N→∞

1

N
log Pr{P̂N ∈ Π} = − inf

Q∈Π
D(Q‖P ).

(a) Determine −arginfQ∈ΠD(Q‖P ) , i.e., determine the element Q for which the infinum is taken on.

(b) Determine − infQ∈ΠD(Q‖P ) .
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Solution 4. We are looking for the I -projection of P onto Π , call the result Q . Since Π is a linear
family with a single constraint on the expected value of x2 we know that the density of the minimizing
distribution has the form

q(x) = p(x)eθx
2−A(θ).

If we insert p(x) = 1√
2π
e−

x2

2 this gives us

q(x) = e−
x2

2 +θx2−Ã(θ).

We recognize the right-hand side to be the density of a zero-mean Gaussian distribution and by assumption
this distribution has second moment 2 . Hence, the solution is a zero-mean Gaussian distribution with

variance 2 , i.e., q(x) = 1√
4π
e−

x2

4 . The asymptotic exponent is given by the KL distance between these

two distributions. We have

D(q‖p) =

∫
1√
4π
e−

x2

4 log

1√
4π
e−

x2

4

1√
2π
e−

x2

2

dx

=
1

2
log

1

2
+

∫
1√
4π
e−

x2

4 [−x
2

4
+
x2

2
]dx

=
1

2
(log

1

2
+ 1) =

1

2
(− log 2 + 1) ∼ 0.153426.

To summarize

1. −arginfQ∈ΠD(Q‖P ) is given by q(x) = 1√
4π
e−

x2

4 .

2. − infQ∈ΠD(Q‖P ) = −0.153426 .

Problem 5: Choose the Shortest Description

Suppose C0 : U → {0, 1}∗ and C1 : U → {0, 1}∗ are two prefix-free codes for the alphabet U . Consider
the code C : U → {0, 1}∗ defined by

C(u) =

{
[0, C0(u)] if lengthC0(u) ≤ lengthC1(u)

[1, C1(u)] else.

Observe that length(C(u)) = 1 + min{length(C0(u)), length(C1(u))} .

(a) Is C a prefix-free code? Explain.

(b) Suppose C0, . . . , CK−1 are K prefix-free codes for the alphabet U . Show that there is a prefix-free
code C with

length(C(u)) = dlog2Ke+ min
0≤k<K−1

length(Ck(u)).

(c) Suppose we are told that U is a random variable taking values in U , and we are also told that the
distribution p of U is one of K distributions p0, . . . , pK−1 , but we do not know which. Using (b)
describe how to construct a prefix-free code C such that

E[length(C(U))] ≤ dlog2Ke+ 1 +H(U).

[Hint: From class we know that for each k there is a prefix-free code Ck that descibes each letter
u with at most d− log2 pk(u)e bits.]
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Solution 5. (a) Yes, C is a prefix-free code. We can prove it by contradiction. Suppose there exist
u, v ∈ U such that C(u) is a prefix of C(v) . Then they must start with the same bit. Without
loss of generality, let us assume they start with 0 , then we have C(u) = 0C0(u) is a prefix of
C(v) = 0C0(v) . This requires C0(u) is a prefix of C0(v) which contradicts to C0 is prefix free code.

(b) Generalizing the given construction, we can construct the code C(u) for any u ∈ U as follows.

C(u) = Bin(i∗)Ci∗(u) (11)

where i∗ = arg min0≤k≤K−1} lengthCi(u) and Bin(i∗) is the binary representation of number i∗ .
The length of such code is exactly the given expression and by the same reason in (a), we can show
that it is prefix-free.

(c) As the hint suggests, we can use prefix free code Ck such that length(Ck) ≤ d− log2 pk(u)e and
construct the prefix-free code C as in [b]. Then we have

length(C(u)) = dlog2Ke+ min
0≤k<K−1

length(Ck(u)) (12)

≤ dlog2Ke+ 1− min
0≤k<K−1

log2 pk(u) (13)

≤ dlog2Ke+ 1− log2 p(u) (14)

Taking expectation at both sides, we get that

E[length(C(U))] ≤ dlog2Ke+ 1 +H(U). (15)

Problem 6: Prediction and coding

After observing a binary sequence u1, . . . , ui , that contains n0(ui) zeros and n1(ui) ones, we are asked
to estimate the probability that the next observation, ui+1 will be 0. One class of estimators are of the
form

P̂Ui+1|Ui(0|u
i) =

n0(ui) + α

n0(ui) + n1(ui) + 2α
P̂Ui+1|Ui(1|u

i) =
n1(ui) + α

n0(ui) + n1(ui) + 2α
.

We will consider the case α = 1/2 , this is known as the Krichevsky–Trofimov estimator. Note that for
i = 0 we get P̂U1

(0) = P̂U1
(1) = 1/2 .

Consider now the joint distribution P̂ (un) on {0, 1}n induced by this estimator,

P̂ (un) =

n∏
i=1

P̂Ui|Ui−1(ui|ui−1).

(a) Show, by induction on n that, for any n and any un ∈ {0, 1}n ,

P̂ (u1, . . . , un) ≥ 1

2
√
n

(n0

n

)n0
(n1

n

)n1

,

where n0 = n0(un) and n1 = n1(un) .

[Hint: if 0 ≤ m ≤ n , then (1 + 1/n)n+1/2 ≥ m+1
m+1/2 (1 + 1/m)m ]

(b) Conclude that there is a prefix-free code C : U → {0, 1}∗ such that

length C(u1, . . . , un) ≤ nh2

(
n0(un)

n

)
+

1

2
log n+ 2,

with h2(x) = −x log x− (1− x) log(1− x) .
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(c) Show that if U1, . . . , Un are i.i.d. Bernoulli, then

1

n
E[length C(U1, . . . , Un)] ≤ H(U1) +

1

2n
log n+

2

n

Solution 6. (a) For n = 1 , we have P̂ (u1) = P̂U1
(ui) = 1

2 . If u1 = 0 , n0(u1) = 1 and n1(u1) = 0 .

Hence, P̂ (u1) = 1
2 = 1

2
√
n

(n0

n )n0(n1

n )n1 . It is easy to show that for u1 = 1 , the inequality still holds with

equality.

For n = k ≥ 1 , let’s assume that P̂ (u1, . . . , uk) ≥ 1
2
√
k

(
n0

k

)n0
(
n1

k

)n1

. For n = k + 1 , it is sufficient to

check uk+1 = 0 , as the case ui+1 = 1 is the same if we also exchange the roles of n0 and n1 . In this
case, n0(uk+1) = n0(uk) + 1 and n1(uk+1) = n1(uk) .

P̂ (u1, . . . , uk, 0) = P̂Uk+1|Uk(0|uk)P̂Uk(uk)

≥
n0(uk) + 1

2

n0(uk) + n1(uk) + 1

1

2
√
k

(n0(uk)

k

)n0(uk)(n1(uk)

k

)n1(uk)

=
(k + 1)k+1/2

kk+1/2

(n0(uk) + 1
2 )n0(uk)n0(uk)

(n0(uk) + 1)n0(uk)+1︸ ︷︷ ︸
f(uk)

1

2
√
k + 1

(
n0(uk+1)

k + 1

)n0(uk+1)(
n1(uk+1)

k + 1

)n1(uk+1)

We need to show that f(uk) ≥ 1 for any uk ∈ {0, 1}k , but this follows from the hint. Therefore, we
proved that our induction hypothesis is true for any n = k + 1 , given the condition that n = k cases is
satisfied. By induction, we have for any integer n ≥ 1

P̂ (u1, . . . , un) ≥ 1

2
√
n

(n0

n

)n0
(n1

n

)n1

,

Proof the hint: We need to show that:(
1 +

1

k

)k+1/2

≥ n0(uk) + 1

n0(uk) + 1
2

(
1 +

1

n0(uk)

)n0(uk)

︸ ︷︷ ︸
g(n0(uk))=g(n0)

.

Now, consider the function g(x) = x+1
x+ 1

2

(1 + 1
x )x for x ≥ 1 . Since we have that n0(uk) ≤ k , if g(x) is

an increasing function then we would have:

g(n0(uk)) ≤ g(k) =
k + 1

k + 1
2

(1 +
1

k
)k =

k + 1

(k + 1
2 )
√

1 + 1
k

(1 +
1

k
)k+1/2

=

√
k(k + 1)

k + 1
2

(1 +
1

k
)k+1/2

<

(
1 +

1

k

)k+1/2

,

and the result would follow (the last inequality is due to
√
k(k + 1) <

√
k(k + 1) + 1/4 = k + 1/2 ) .

Hence, we just need to show that g(x) is an increasing function, i.e. that d
dxg(x) ≥ 0 . A simple way

of doing this is by showing that ln g(x) is an increasing function, which would then imply the result for
g(x) . If we compute the differentiation of ln g(x) , we get

d

dx
ln g(x) =

1

x+ 1
− 1

x+ 1
2

+ ln

(
1 +

1

x

)
− 1

x+ 1
= ln(x+ 1)− lnx− 1

x+ 1
2
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Now observe:

ln(x+ 1)− lnx =

∫ x+1

x

1

u
du = E

[
1

U

]
,

where U is a unifom random variable between x and x+ 1 . Also,

1

x+ 1/2
=

1

E[U ]
.

Thus:
d

dx
ln g(x) = E

[
1

U

]
− 1

E[U ]

and the positivity of d
dx ln g(x) follows from the convexity of the function u → 1/u (and Jensen’s

inequality).

(b) Consider the code with length function L(un) = d− log P̂ (un)e . We can check that such code satisfies
the Kraft Inequity. ∑

un

2−L(un) =
∑
un

2−d− log P̂ (un)e ≤
∑
un

P̂ (un) = 1

Hence, there exists a prefix-free code with length function L(un) .

length C(u1, . . . , un) = d− log P̂ (un)e ≤ − log P̂ (un) + 1

≤ − log

(
1

2
√
n

(n0

n

)n0
(n1

n

)n1
)

+ 1

= 2 +
1

2
log n+ n

[
−n0

n
log(

n0

n
)− n1

n
log

n1

n

]
= 2 +

1

2
log n+ nh2(

n0

n
)

(c) Let Pr(Ui = 0) = θ , ∀i ∈ {1, . . . , n} . Since U1, . . . , Un are i.i.d, we have E[n0(un)] =
∑n
i=1 E[n0(ui)] =

nθ and H(Ui) = h2(θ) for all i .

E[length C(U1, . . . , Un)] ≤ E[nh2(
n0(un)

n
) +

1

2
log n+ 2]

= nE[h2(
n0(un)

n
)] +

1

2
log n+ 2

≤ nh2(
E[n0(un)]

n
) +

1

2
log n+ 2

= nh2(θ) +
1

2
log n+ 2

= nH(U1) +
1

2
log n+ 2

Therefore,

1

n
E[length C(U1, . . . , Un)] ≤ H(U1) +

1

2n
log n+

2

n

Problem 7: Universal codes

Suppose we have an alphabet U , and let Π denote the set of distributions on U . Suppose we are
given a family of S of distributions on U , i.e., S ⊂ Π . For now, assume that S is finite.

Define the distribution QS ∈ Π
QS(u) = Z−1 max

P∈S
P (u)

where the normalizing constant Z = Z(S) =
∑
u maxP∈S P (u) ensures that QS is a distribution.
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(a) Show that D(P‖Q) ≤ logZ ≤ log |S| for every P ∈ S .

(b) For any S , show that there is a prefix-free code C : U → {0, 1}∗ such that for any random variable
U with distribution P ∈ S ,

E[length C(U)] ≤ H(U) + logZ + 1.

(Note that C is designed on the knowledge of S alone, it cannot change on the basis of the choice
of P .) [Hint: consider L(u) = − log2QS(u) as an ‘almost’ length function.]

(c) Now suppose that S is not necessarily finite, but there is a finite S0 ⊂ Π such that for each u ∈ U ,
supP∈S P (u) ≤ maxP∈S0

P (u) . Show that Z(S) ≤ |S0| .

Now suppose U = {0, 1}m . For θ ∈ [0, 1] and (x1, . . . , xm) ∈ U , let

Pθ(x1, . . . , xn) =
∏
i

θxi(1− θ)1−xi .

(This is a fancy way to say that the random variable U = (X1, . . . , Xn) has i.i.d. Bernoulli θ components).
Let S = {Pθ : θ ∈ [0, 1]} .

(d) Show that for u = (x1, . . . , xm) ∈ {0, 1}m

max
θ
Pθ(x1, . . . , xm) = Pk/m(x1, . . . , xm)

where k =
∑
i xi .

(e) Show that there is a prefix-free code C : {0, 1}m → {0, 1}∗ such that whenever X1, . . . , Xn are
i.i.d. Bernoulli,

1

m
E[length C(X1, . . . , Xm)] ≤ H(X1) +

1 + log2(1 +m)

m
.

Solution 7. (a) From the definition QS(u) = Z−1 maxP∈S P (u) , we have QS(u) ≥ P (u)/Z . Hence,
Z ≥ P (u)/QS(u) and

D(P‖Q) =
∑
u

P (u) log
P (u)

Q(u)
≤
∑
u

P (u) logZ = logZ

From Z = Z(S) =
∑
u maxP∈S P (u) , we have Z ≤

∑
u

∑
P∈S P (u) =

∑
P∈S

∑
u P (u) = |S| . So

logZ ≤ log |S| .

(b) For any S , we can find a binary code with length function L(u) = d− log2QS(u)e for the codeword
C(u) . Since the length function of this binary code satisfies the Kraft Inequality,∑

u

2−L(u) =
∑
u

2−d− log2QS(u)e ≤
∑
u

2log2QS(u) ≤
∑
u

QS(u) = 1

there exists a prefix-free code C with length function L(u) . And the expected length of such code can
be computed as

E[length C(U)] = E[L(U)] = E[d− log2QS(u)e]
≤ E[1− log2QS(u)]

= 1 + E[log2

P (u)

QS(u)
+ log2

1

P (u)
]

= 1 +D(P‖Q) +H(U)

≤ 1 + logZ +H(U)
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(c) Similar as we showed in (a),

Z(S) =
∑
u

max
P∈S

P (u) ≤
∑
u

sup
P∈S

P (u) ≤
∑
u

max
P∈S0

P (u) ≤
∑
u

∑
P∈S0

P (u) = |S0|

(d) Rewrite the definition of Pθ :

Pθ(x1, . . . , xm) =
∏
i

θxi(1− θ)1−xi = θ
∑
i xi(1− θ)

∑
i(1−xi) = θk(1− θ)m−k

Thus, logPθ = k log θ + (m− k) log(1− θ) .

Compute the differentiation of logPθ w.r.t θ :

d

dθ
logPθ =

k

θ
− m− k

1− θ

Set d
dθ logPθ = 0 , we get θ̂ = k/m . As logarithm is an increasing function, Pθ is maximized when

logPθ is maximized.

(e) From (b) we know that there exists a prefix-free code such that

E[length C(X1, . . . , Xm)] ≤ H(X1, . . . , Xm) + logZ + 1

where H(X1, . . . , Xm) = mH(X1) , since they are i.i.d. From (d), we know that S0 = {Pk/m : k =∑m
i xi} has the property in (c). Since each xi is binary, k is an integer between 0 and m . So

|S0| = m+ 1 , we have Z(S) ≤ |S0| = m+ 1 . Therefore we have

1

m
E[length C(X1, . . . , Xm)] ≤ H(X1) +

log(1 +m) + 1

m
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