
Foundations of Data Science Ecole Polytechnique Fédérale, Lausanne: Fall 2022
Urbanke December 12, 2022

Problem Set 8 (not graded)
For the Exercise Session on Dec 23

Last name First name SCIPER Nr Points

Problem 1: Code Extension

Suppose |U| ≥ 2 . For n ≥ 1 and a code c : U → {0, 1}∗ we define its n -extension cn : Un → {0, 1}∗ via
cn(un) = c(u1) . . . c(un) . In other words cn(un) is the concatenation of the binary strings c(u1) , . . . ,
c(un) . A code c is said to be uniquely decodeable if for any uk and ũm with uk 6= ũm , ck(uk) 6= cm(ũm) .

(a) Show that if c is uniquely decodable, then for all n ≥ 1 , cn is injective.

(b) Show that if c is not uniquely decodable, there are uk and ũm with u1 6= ũ1 and ck(uk) = cm(ũm) .

(c) Show that if c is not uniquely decodable, then there is an n for which cn is not injective. [Hint:
try n = k +m .]

Solution 1. (a) Suppose that cn is not injective, then there exists un 6= ũn such that cn(un) = cn(ũn) ,
hence c is not uniquely decodable, which is a contradiction.

(b) If c is not uniquely decodable, then there exists uk and ũm such that ck(uk) = cm(ũm) . First
suppose that uk is a prefix of ũm , then c(ũk+1) = λ which means that for any a ∈ U \ {ũk+1} we have
that c2(ũk+1a) = c2(aũk+1) which proves the statement. If ũm is a prefix of uk a similar reasoning
can be applied. Otherwise let p be the first index where up 6= ũp , then if up−11 = u1u2 . . . up−1 ,
ukp = upup+1 . . . uk and ũmp = ũpũp+1 . . . ũm we have that

cp−1(up−11)ck−p+1(ukp) = ck(uk) = cm(ũm) = cp−1(up−11)cm−p+1(ũmp)

Hence ck−p+1(ukp) = cm−p+1(ũmp) and up 6= ũp which proves the statement.

(c) As shown in subquestion b , if c is not uniquely decodable then there exists uk and ũm such
that u1 6= ũ1 and ck(uk) = cm(ũm) , now if n = m + k , we have that cn(ukũm) = ck(uk)cm(ũm) =
cm(ũm)ck(uk) = cn(ũmuk) and since u1 6= ũ1 , ukũm 6= ũmuk so cn is not injective.

Problem 2: Elias coding

Let 0n denote a sequence of n zeros. Consider the code (the subscript U a mnemonic for ‘Unary’),
CU : {1, 2, . . . } → {0, 1}∗ for the positive integers defined as CU (n) = 0n−1 .

(a) Is CU injective? Is it prefix-free?

Consider the code (the subscript B a mnenonic for ‘Binary’), CB : {1, 2, . . . } → {0, 1}∗ where CB(n) is
the binary expansion of n . I.e., CB(1) = 1 , CB(2) = 10 , CB(3) = 11 , CB(4) = 100 , Note that

length CB(n) = dlog2(n+ 1)e = 1 + blog2 nc.

1

(b) Is CB injective? Is it prefix-free?

With k(n) = length CB(n) , define C0(n) = CU (k(n))CB(n) .

(c) Show that C0 is a prefix-free code for the positive integers. To do so, you may find it eas-
ier to describe how you would recover n1, n2, . . . from the concatenation of their codewords
C0(n1)C0(n2)

(d) What is length(C0(n)) ?

Now consider C1(n) = C0(k(n))CB(n) .

(e) Show that C1 is a prefix-free code for the positive integers, and show that length(C1(n)) = 2 +
2blog(1 + blog nc)c+ blog nc ≤ 2 + 2 log(1 + log n) + log n .

Suppose U is a random variable taking values in the positive integers with Pr(U = 1) ≥ Pr(U = 2) ≥

(f) Show that E[logU] ≤ H(U) , [Hint: first show iPr(U = i) ≤ 1], and conclude that

E[length C1(U)] ≤ H(U) + 2 log(1 +H(U)) + 2.

Solution 2. (a) As CU (n) and CU (m) are of different lengths when n 6= m , the code is injective. It is
not prefix free, in particular CU (1) = empty-string is a prefix of all other codewords.

(b) As different integers have different binary expansions, CB is injective. It is not prefix free, e.g.,
CB(1) = 1 is a prefix of all other codewords.

(c) The codeword of C0(n) = CU (k(n))CB(n) is concatenated by two parts. The first part, CU (k(n)) , is
the sequence of zeros with length of k(n) − 1 . And the second part, CB(n) is a binary representation
for n . For any two different positive integers n1 and n2 , let’s assume that n1 < n2 , which implies that
length(C0(n1)) ≤ length(C0(n2)) and k(n1) ≤ k(n2) . We show that C0(n1) is not a prefix of C0(n2) .

If k(n1) < k(n2) , the first k(n1) bits of C0(n1) are 0 . . . 01 1, while the first k(n1) bits of C0(n2)
are all zeros. So in such cases, C0(n1) cannot be a prefix of C0(n2) . If k(n1) = k(n2) , we have
length(C0(n1)) = length(C0(n2)) . Although the first k(n1) bits of C0(n1) and C0(n2) are the same, the
second parts, CB(n1) and CB(n2) are different. So C0(n1) cannot be a prefix of C0(n2) . Therefore,
C0(n1) cannot be a prefix of C0(n2) for any positive integers n1 < n2 . In other words, C0 is a prefix-free
code for the positive integers.

(d)Since k(n) = length(CB(n)) = 1 + blog2 nc ,

length(C0(n)) = length(CU (k(n))) + length(CB(n))

= k(n)− 1 + 1 + blog2 nc
= 1 + 2blog2 nc

(e) Similarly, as we did in (c), we can show that for any positive integers n1 < n2 , C1(n1) cannot be
a prefix of C1(n2) . If k(n1) < k(n2) , C0(k(n1)) is not a prefix of C0(k(n2)) , since C0 is prefix-free for
positive integers. Hence, in such cases, C1(n1) cannot be a prefix of C1(n2) . If k(n1) = k(n2) , we have
length(C1(n1)) = length(C1(n2)) . Although the first length(C0(k(n1))) bits of C1(n1) and C1(n2) are

1If k(n1) = 1 , then there is no zeros and sequence starts with 1 .

2

the same, the second parts, CB(n1) and CB(n2) are different. So C1(n1) cannot be a prefix of C1(n2) .
Therefore, C1(n1) cannot be a prefix of C1(n2) for any positive integers n1 < n2 . In other words, C1 is
a prefix-free code for the positive integers.

The length of C1(n) can be computed as

length(C1(n)) = length(C0(k(n))) + length(CB(n))

= 1 + 2blog2 k(n)c+ k(n)

= 2 + 2blog2(1 + blog2 nc)c+ blog2 nc
≤ 2 + 2 log2(1 + log2 n) + log2 n

(f) For random variable U with Pr(U = 1) ≥ Pr(U = 2) ≥ . . . , we have

1 =
∑
j

Pr(U = j) ≥
i∑

j=1

Pr(U = j) ≥ iPr(U = i)

Taking log at both sides, we get − log Pr(U = i) ≥ log i ,∀i .

E[logU] =
∑
i

Pr(U = i) log i ≤ −
∑
i

Pr(U = i) log Pr(U = i) = H(U)

Using the results from (e) we have

E[length(C1(U))] ≤ E[2 + 2 log(1 + logU) + logU]

= 2 + 2E[log(1 + logU)] + E[logU]

≤ 2 + 2 log(1 +H(U)) +H(U)

where we used E[log(x)] ≤ log(E[x]) for the second term because log(x) is a concave and monotonically
increasing function.

Problem 3: Lower bound on Expected Length

Suppose U is a random variable taking values in {1, 2, . . . } . Set L = blog2 Uc . (I.e., L = j if and only
if 2j ≤ U < 2j+1 ; j = 0, 1, 2,

(a) Show that H(U |L = j) ≤ j , j = 0, 1,

(b) Show that H(U |L) ≤ E[L] .

(c) Show that H(U) ≤ E[L] +H(L) .

(d) Suppose that Pr(U = 1) ≥ Pr(U = 2) ≥ Show that 1 ≥ iPr(U = i) .

(e) With U as in (d), and using the result of (d), show that E[log2 U] ≤ H(U) and conclude that
E[L] ≤ H(U) .

(f) Suppose that N is a random variable taking values in {0, 1, . . . } with distribution pN and E[N] =
µ . Let G be a geometric random variable with mean µ , i.e., pG(n) = µn/(1 + µ)1+n , n ≥ 0 .

Show that H(G) − H(N) = D(pN‖pG) , and conclude that H(N) ≤ g(µ) with g(x) = (1 +
x) log2(1 + x)− x log2 x .

[Hint: Let f(n, µ) = − log2 pG(n) = (n+ 1) log2(1 + µ)− n log2(µ) . First show that E[f(G,µ)] =
E[f(N,µ)] , and consequently H(G) =

∑
n pN (n) log2(1/pG(n)) .]

3

(g) Show that for U as in (d) and g(x) as in (f),

E[L] ≥ H(U)− g(H(U)).

[Hint: combine (f), (e), (c).]

(h) Now suppose U is a random variable taking values on an alphabet U , and c : U → {0, 1}∗ is an
injective code. Show that

E[length c(U)] ≥ H(U)− g(H(U)).

[Hint: the best injective code will label U = {a1, a2, a3, . . . } so that Pr(U = a1) ≥ Pr(U = a2) ≥
. . . , and assign the binary sequences λ, 0, 1, 00, 01, 10, 11, ... to the letters a1, a2, . . . in that order.
Now observe that the i ’th binary sequence in the list λ, 0, 1, 00, 01, . . . is of length blog2 ic .]

Solution 3. (a) We know that if L = j then 2j ≤ U < 2j+1 , meaning that if L = j then U can take
at most 2j+1 − 2j = 2j values. We also know that the entropy of a discrete random variable is at most
the logarithm of the number of possible values it assumes. Thus,

H(U |L = j) ≤ log2(2j) = j. (1)

(b) We have that:

H(U |L) =
∑
j

pL(j)H(U |L = j) (2)

≤
∑
j

pL(j)j (3)

= E[L]. (4)

(c) We have that:

H(U) ≤ H(UL) (5)

= H(L) +H(U |L) (6)

≤ H(L) + E[L]. (7)

Where (7) follows from (b). Notice that Ineq. (5) is actually an equality, since L is a function of U (and
thus, H(L|U) = 0).

(d) For random variable U with Pr(U = 1) ≥ Pr(U = 2) ≥ . . . , we have

1 =
∑
j

Pr(U = j) ≥
i∑

j=1

Pr(U = j) ≥ iPr(U = i). (8)

(e) From (d) we get that for a given i , log2 i ≤ − log2 Pr(U = i) . Thus:

E[blog2 Uc] =
∑
i

Pr(U = i)blog2 ic (9)

≤
∑
i

Pr(U = i) log2 i (10)

≤ −
∑
i

Pr(U = i) log2 Pr(U = i) (11)

= H(U) (12)

4

(f) It is easy to see that, for any integer valued random variable Q :

E[f(Q,µ)] =
∑
n

((n+ 1) log(1 + µ)− n logµ)pQ(n) (13)

= log(1 + µ)
∑
n

(n+ 1)pQ(n)− logµ
∑
n

npQ(n) (14)

= log(1 + µ)(E[Q] + 1)− logµE[Q] (15)

Thus, since E[N] = E[G] , we have that E[f(N,µ)] = E[f(G,µ)] .

This implies that H(G) =
∑
n pN (n) log(1/pG(n)) as H(G) = EG[− log(pG)] = EN [− log(pG)] . Com-

puting the difference:

H(G)−H(N) =
∑
n

pN (n)

(
log

1

pG(n)
− log

1

pN (n)

)
(16)

=
∑
n

pN (n) log

(
pN (n)

pG(n)

)
(17)

= D(pN‖pG). (18)

To conclude:

H(N) = H(G)−D(pN‖pG) ≤ H(G) = (1 + µ) log(1 + µ)− µ logµ = g(µ). (19)

(g) Let us denote with µ = E[L] . L takes values in {0, 1, . . .} and from (f) we know that

H(L) ≤ g(µ). (20)

From (e) we have that
µ = E[L] ≤ H(U). (21)

As g(x) a non-decreasing function for x > 0 (the derivative is log2(1 + x)− log2(x) > 0 for x > 0), we
can see that

g(µ) = g(E[L]) ≤ g(H(U)). (22)

To conclude, from (c) we have that:

E[L] ≥ H(U)−H(L) (23)

≥ H(U)− g(µ) (24)

≥ H(U)− g(H(U)). (25)

(h) Consider the following random variable V taking values in the alphabet V = {1, 2, . . .} and such
that Pr (V = i) = Pr (U = ai) for every i = 1, 2 . . . , i.e. a bijective mapping from U to V . We have
that E[length c(U)] = E[blog2 V c]. Let us denote with L̂ = blog2 V c : this random variable will play the
same role played by L until now. We can say that:

E[length c(U)] = E[L̂] (26)

≥ H(V)− g(H(V)) (27)

= H(U)− g(H(U)). (28)

Where (27) follows from (g) and (28) is true since V is a bijective function of U and entropy is preserved
under bijective mappings.

Problem 4: Dependence and large error events

In the lecture notes we have seen how to bound the expected generalization error using information

5

measures. With this exercise we will work on large error events and provide bounds on the probabilities
of such events. The setting is the same: we observe n iid samples D = (X1, . . . , Xn) (according to
some unknown distribution P) and based on this observation we will choose a hypothesis w ∈ W . We
also consider the usual definition of empirical and population risk, i.e. given a loss function ` , some
hypothesis w , LD(w) = 1

n

∑n
i=1 `(w,Xi) , and LP (w) = EP [`(w,X)] . We are interested in controlling

the following quantity:
Pr (|LP (W)− LD(W)| > ε) . (29)

(a) Suppose that the loss is such that `(w, x) ∈ {0, 1} for every w ∈W and x ∈ X . Suppose also that
|W| <∞ , i.e., the number of hypotheses is finite.

1. Show that for every fixed w ∈W Pr (|LP (w)− LD(w)| > ε) ≤ 2 exp(−2nε2);

2. Show that
Pr (|LP (W)− LD(W)| > ε) ≤ |W | · 2 exp(−2nε2); (30)

Hint: denote with E = {(d,w) : |LP (w)− Ld(w)| > ε}.
You have that Pr (|LP (W)− LD(W)| > ε) = Pr(E) =

∑
(w,d)∈E P (w, d) .

(be careful: Pr (|LP (W)− LD(W)| > ε|W = w) is not necessarily ≤ 2 exp(−2nε2).Why?)

(b) Now consider the following information measure, given two discrete random variables X,Y :

L(X → Y) = log
∑
y

max
x:PX(x)>0

PY |X(y|x). (31)

This quantity is known in the literature as Maximal Leakage and quantifies the leakage of informa-
tion between X and Y .

1. Show that if the alphabet of Y (denoted with Y) is finite then

L(X → Y) ≤ log |Y|,

which distributions achieve the bound with equality?

2. It is possible to show that
L(X → Y) ≥ 0,

which distributions achieve the bound with equality?

3. Let X be a binary random variable and let Y be an observation of X after passing through
a Binary Symmetric Channel with parameter δ . More precisely we have PY |X=x(x) = 1− δ,
for x ∈ {0, 1} .

What is the maximal leakage L(X → Y) ?

Which values of δ allow you to achieve the bounds in (1), (2) with equality?

4. Suppose further that the space of samples D is finite. Denote with Ew = {d : (d,w) ∈ E} ,
for w ∈ W ; Show that:

Pr (|LP (W)− LD(W)| > ε) ≤ exp(L(D →W)) max
w∈W

Pr(Ew);

5. Conclude that

Pr (|LP (W)− LD(W)| > ε) ≤ 2 exp(L(D →W)− 2nε2);

6. Compare the two bound retrieved in (a2) and (b4), what do you notice? Is one of the two
better than the other? When are they equal? What conclusions can you draw?

6

Solution 4. (a1) For a given w ∈W , we have, by assumption, that `(w,Xi)− E[`(w,X)] is a 0 -mean
Bernoulli random variable. Hence, LD(w)−LP (w) is a 1

4 -sub-Gaussian random variable. By Hoeffding’s
inequality for σ2 -sub-Gaussian (Lemma 5.5 in the Lecture Notes):

Pr (|LP (w)− LD(w)| > ε) ≤ 2 exp

(
−nε

2

2σ2

)
= 2 exp(−2nε2) (32)

(a2) Using the hint, we have that:

Pr (|LP (W)− LD(W)| > ε) = Pr(E) (33)

=
∑

(w,d)∈E

PWD(w, d) (34)

=
∑
w∈W

∑
d∈Ew

PW |D=d(w)PD(d) (35)

≤
∑
w∈W

∑
d∈Ew

PD(d) (36)

=
∑
w∈W

PD(Ew) (37)

≤
∑
w∈W

2 exp(−2nε2) (38)

= 2|W | exp(−2nε2). (39)

Where we denoted with Ew = {d : (d,w) ∈ E)} . The important thing to notice here is that splitting
the summation in this way, and considering Ew for a given w ∈W is, in a way, equivalent to fixing the
hypothesis w , just like we assumed in (a1). This, along with upper-bounding PW |D=d(w) by 1 , allows
us to ‘ignore’ the dependence between W and D . Better bounds can be obtained, as we will soon see,
by actually expoliting the dependence and not trivially upper-bounding the conditional probabilities.

(b1) Starting from the expression:

L(X → Y) = log
∑
y

max
x:PX(x)>0

PY |X(y|x) (40)

≤ log
∑
y

1 = log |Y|. (41)

Fixed a distribution PX a set of distributions PY |X that achieves the bound with equality is the one
induced by a deterministic mapping (i.e., Y = f(X) , and f is deterministic).

(b2) Fixed a distribution PX , if Y is independent from X we have that PY |X = PY and:

L(X → Y) = log
∑
y

max
x:PX(x)>0

PY |X(y|x) (42)

= log
∑
y

PY (y) = log 1 = 0. (43)

(b3) The Maximal Leakage in this case is L(X → Y) = log(2(1− δ)) .

With δ = 0 , we have a determinstic channel, as PY |X=0(0) = 1 and PY |X=0(1) = 0 and we have that
L(X → Y) = log(2) = log(|Y|) , recovering (b1) with equality.

With δ = 1/2 , we have that Y is independent of X as PY |X=0(0) = PY |X=1(0) = 1/2 and we have
that L(X → Y) = log(1) = 0 , recovering (b2) with equality.

7

(b4)

Pr (|LP (W)− LD(W)| > ε) = Pr(E) (44)

=
∑

(w,d)∈E

PWD(w, d) (45)

=
∑
w∈W

∑
d∈Ew

PW |D=d(w)PD(d) (46)

≤
∑
w∈W

max
d:PD(d)>0

PW |D=d(w)
∑
d∈Ew

PD(d) (47)

=
∑
w∈W

max
d:PD(d)>0

PW |D=d(w)PD(Ew) (48)

≤ max
w∈W

PD(Ew)
∑
w∈W

max
d:PD(d)>0

PW |D=d(w) (49)

= max
w∈W

PD(Ew) exp(L(D →W)). (50)

(b5) As noticed in (a1), for every w ∈W we have that Pr (|LP (w)− LD(w)| > ε) ≤ 2 exp(−2nε2) . The
bound follows from this and (b2).

(b6) Under the assumption that |W | <∞ as seen in (b1), the Maximal Leakage L(D →W) ≤ log |W | .
Thus, the bound in (b4) can be tighter that the one in (a2). More precisely: when W = f(D) where f
is deterministic, i.e. maximum dependence of W on D , we recover the bound in (a2). When W and
D are independent, we have that L(D →W) = 0 and we recover the Hoeffding’s bound. Measuring the
dependence (or, in other words, the amount of adaptivity) via Maximal Leakage, allows us to go from
the classical Hoeffding’s bound to the ‘worst-case’ scenario provided by the union bound in (a2). The
first case represents no dependence, the second case represents maximum dependence, with a whole
spectrum of behaviours in the middle. Another interpretation of the bound (specific to the measure) is
the following: if the learning algorithm leaks too much information about the training set, then it will
overfit. If you limit the amount of leakage, then you generalize (and potentially, with an exponentially
decaying bound).

Problem 5: Tighter Generalization Bound

[10pts] Let D = X1, ..., Xn iid from an unknown distribution PX , let H be a hypothesis space, and
` : H × X → R be a σ2− subgaussian loss function for every h . In the lecture we have seen that the
generalization error can be upper bounded using the mutual information.

|EPDH [LPX (H)− LD(H)] | ≤
√

2σ2I(D;H)

n

(i) [4 pts] Modify the proof of the Mutual Information Bound (11.2.2) to show that if for all h ∈ H ,
`(h,X) is σ2− subgaussian in X , then

|EPDH [LPX (H)− LD(H)] | ≤
√

2σ2
∑n
i=1 I(Xi;H)

n
.

Hint: Recall from the lecture notes that

|EPDH [LPX (H)− LD(H)]| ≤ 1

n

n∑
i=1

∣∣EPXiH [`(H,Xi)]− EPXiPH [`(H,Xi)]
∣∣ .

8

Solution:

||EPDH [LPX (H)− LD(H)] || ≤ 1

n

n∑
i=1

∣∣EPXiH [`(H,Xi)]− EPXiPH [`(H,Xi)]
∣∣

≤ 1

n

n∑
i=1

EPH
[∣∣∣EPXi|H [`(H,Xi)]− EPXi [`(H,Xi)]

∣∣∣] (11.14)

≤ 1

n

n∑
i=1

EPH
[√

2σ2D(PXi|H ||PXi)
]

(11.12)

≤ 1

n

n∑
i=1

√
2σ2EPH

[
D(PXi|H ||PXi)

]
(11.15)

=
1

n

n∑
i=1

√
2σ2I(Xi;H) (11.15)

≤
√

2σ2
∑n
i=1 I(Xi;H)

n

(ii) [3 pts] Show that, this new bound is never worse than the previous bound by showing that,

I(D;H) ≥
n∑
i=1

I(Xi;H).

Solution:

I(D;H) = I(X1, ..., Xn;H) =

n∑
i=1

I(Xi;H|Xi−1) (chain rule for MI)

=

n∑
i=1

I(Xi;HX
i−1) (independence of Xi’s)

≥
n∑
i=1

I(Xi;H) (chain rule and non-negativity of MI)

Therefore the new upper bound is never larger than the previous upper bound.

(iii) [3 pts] Let us consider an example. Assume that D = X1, .., Xn, n > 1, are i.i.d. from N (θ, 1) ,
and that we do not know θ . We want to learn θ assuming the loss `(h, x) = min(1, (h − x)2)
(which is bounded) and H = R . Our learning algorithm outputs H = 1

n

∑n
i=1Xi . Use the new

bound to show that

|EPDH [LPX (H)− LD(H)] | ≤

√
1

4(n− 1)
.

How does the old bound perform in this example?
Hint: Adding independent gaussian random variables, you get a gaussian random variable.
Solution: Note that the learning algorithm is a deterministic one, that is given a training set D ,

the learning algorithm outputs a deterministic number. Note also that by property of Gaussian,
H ∼ N (θ, 1/n) . Therefore,

I(D;H) = h(H)− h(H|D) =
1

2
log(2πe

1

n
)− 1

2
log(2πe0) =∞ (51)

9

which gives a vacuous bound. Let us compute I(X1;H) = h(H)− h(H|X1) . Fix x1 , Then,

H =
1

n
x1 +

1

n

n∑
i=2

Xi (52)

which is Gaussian around some mean (which we do not care about) and with variance (n− 1)/n2 ,
and note that the variance does not depend on x1 . Therefore the mutual information can be
computed as,

I(X1;H) = h(H)− h(H|X1) =
1

2
log(2πe

1

n
)− 1

2
log(2πe

n− 1

n2
) =

1

2
log(

n

n− 1
) (53)

This is true for all I(Xi;H) . Also, this loss function is bounded between 0 − 1 therefore it is
1/4− subgaussian. We get the bound,

|EPDH [LPX (H)− LD(H)] | ≤
√

2σ2
∑n
i=1 I(Xi;H)

n
=

√
2σ2n 1

2 log(n
n−1)

n
(54)

=

√
1

4
log(

n

n− 1
) (55)

=

√
1

4
log(1 +

1

n− 1
) (56)

≤
√

1

4

1

n− 1
(57)

Problem 6: Gibbs Algorithm

Let X be the sample space, W the hypothesis space, and let ` : W × X → R+ be a correspond-
ing loss function. On a dataset D = (X1, X2, . . . , Xn) , the empirical risk for a hypothesis w is given by
LD(w) = 1

n

∑n
i=1 `(w,Xi) . We saw in class that I(D;W) can be used to bound the generalization error.

Hence, we can use it as a regularizer in empirical risk minimization.

(a) First, show that given any joint distribution PXY on X × Y and marginal distribution Q on Y ,
D(PXY ||PXPY) ≤ D(PXY ||PXQ) .

Since we cannot directly compute D(PDW ||PDPW) , we will use D(PDW ||PDQ) as a proxy, where Q is
a distribution on W .

(b) Let

P ?W |D = arg min
PW |D

(
E[LD(W)] +

1

β
D(PDW ||PDQ)

)
.

1. Show that

min
PW |D

(
E[LD(W)] +

1

β
D(PDW ||PDQ)

)
= ED

[
min

PW |D=d

(
E[Ld(W)] +

1

β
D(PW |D=d||Q)

)]
.

2. Show that the minimizer on the right-hand side P ?W |D=d is given by

P ?W |D=d =
e−βLd(w)Q(w)

EQ
[
e−βLd(W)

] .
This is known in the literature as the Gibbs algorithm. (Hint: Write E[βLd(W)] = E[log eβLd(W)] ,
combine with the KL divergence term and use non-negativity of KL divergence.)

10

3. Show that P ?W |D=d is 2β/n -differential private if ` ∈ [0, 1] .

Solution 5. (a) For any marginal distribution Q on Y ,

D(PXY ||PXPY)−D(PXY ||PXQ) =
∑
x,y

PXY (x, y)

(
log

PXY (x, y)

PX(x)PY (y)
− log

PXY (x, y)

PX(x)Q(y)

)
(58)

=
∑
x,y

PXY (x, y) log
Q(y)

PY (y)
(59)

=
∑
y

PY (y) log
Q(y)

PY (y)
(60)

(∗)
≤ log

∑
y

PY (y)
Q(y)

PY (y)
(61)

= log
∑
y

Q(y) = 0 (62)

where (∗) is because log(x) is a concave function of x .

(b1)

min
PW |D

(
E[LD(W)] +

1

β
D(PDW ||PDQ)

)
(63)

= min
PW |D

ED[E[LD(W)|D = d]] +
1

β

∑
w,d

PW |D(w|d)PD(d) log
PW |D(w|d)PD(d)

PD(d)Q

 (64)

= min
PW |D

ED[E[LD(W)|D = d]] +
1

β

∑
w,d

PW |D(w|d)PD(d) log
PW |D(w|d)

Q

 (65)

= min
PW |D

(
ED[E[LD(W)|D = d]] + ED[

1

β
D(PW |D||Q)|D = d]

)
(66)

= ED
[

min
PW |D=d

(
E[Ld(W)] +

1

β
D(PW |D=d||Q)

)]
(67)

11

(b2) Given D = d , we know that PW (w) =
∑
d′ PW |D(w|d′)PD(d′) = PW |D(w|d).

arg min
PW |D=d

(
E[Ld(W)] +

1

β
D(PW |D=d||Q)

)
(68)

= arg min
PW |D=d

(
E[βLd(W)] +D(PW |D=d||Q)

)
(69)

= arg min
PW |D=d

(
E[log eβLd(W)] +D(PW |D=d||Q)

)
(70)

= arg min
PW |D=d

(∑
w

log eβLd(w)PW (w) +
∑
w

PW |D(w|d) log
PW |D(w|d)

Q(w)

)
(71)

= arg min
PW |D=d

(∑
w

log eβLd(w)PW |D(w|d) +
∑
w

PW |D(w|d) log
PW |D(w|d)

Q(w)

)
(72)

= arg min
PW |D=d

(∑
w

PW |D(w|d)(log eβLd(w) + log
PW |D(w|d)

Q(w)
)

)
(73)

= arg min
PW |D=d

(∑
w

PW |D(w|d) log
PW |D(w|d)

Q(w)e−βLd(w)

)
(74)

= arg min
PW |D=d

(∑
w

PW |D(w|d) log
PW |D(w|d)

Q(w)e−βLd(w)

EQ[e−βLd(W)]

EQ[e−βLd(W)]

)
(75)

= arg min
PW |D=d

D

(
PW |D‖

Q(w)e−βLd(w)

EQ[e−βLd(W)]

)
− logEQ[e−βLd(W)] (76)

= arg min
PW |D=d

D

(
PW |D‖

Q(w)e−βLd(w)

EQ[e−βLd(W)]

)
(77)

=
Q(w)e−βLd(w)

EQ[e−βLd(W)]
(78)

The reason why we added EQ[e−βLd(W)] as a normalization term is PW |D has to be a valid pmf, i.e.∑
w PW |D(w|d) = 1 . However, the scaled version of Q , Q(w)e−βLd(w) , may not be a valid pmf.

(b3) Suppose d and d′ differ at j -th entry only. Hence,

e−βLd(w)eβLd′ (w) = e−
β
n (e(wj ,Xj)−e(wj ,X′j)) ≤ eβ/n (79)

Similarly,

EQ[e−βLd(w)]

EQ[e−βLd′ (w)]
≤ EQ[e

β
n e−βLd′ (w)]

EQ[e−βLd′ (w)]
≤ e

β
n (80)

Thus, we have
P∗W |D=b

P∗
W |D=d′

≤ e2β/n and P ∗W |D=d is 2β/n−differential private if l ∈ [0, 1] .

12

