Solutions to Homework 1

Exercise 1. a) $\mathcal{F}=\{\emptyset,\{2\},\{5\},\{1,3\},\{2,5\},\{4,6\},\{1,2,3\},\{1,3,5\},\{2,4,6\},\{4,5,6\}$, $\{1,2,3,5\},\{1,3,4,6\},\{2,4,5,6\},\{1,2,3,4,6\},\{1,3,4,5,6\},\{1,2,3,4,5,6\}\}\left(16=2^{4}\right.$ elements)
b) atoms of $\mathcal{F}:\{1,3\},\{2\},\{4,6\},\{5\}$. Notice that one also has $\mathcal{F}=\sigma(\{1,3\},\{2\},\{4,6\},\{5\})$, as already mentioned in the problem set.
c) Nearly by definition, $\sigma\left(X_{1}, X_{2}\right)=\sigma(\{1,2,3\},\{1,3,5\})=\mathcal{F}$. Besides, the random variable Y satisfies: $Y(1)=Y(3)=2, Y(2)=Y(5)=1$ and $Y(4)=Y(6)=0$. We deduce from there that the atoms of $\sigma(Y)$ are $\{1,3\},\{2,5\}$ and $\{4,6\}$, and therefore that Y contains less information than X_{1}, X_{2}, i.e., that $\sigma(Y) \subset \sigma\left(X_{1}, X_{2}\right)$ and $\sigma(Y) \neq \sigma\left(X_{1}, X_{2}\right)$.

Exercise 2. Here is a systematic but not necessarily optimal procedure, described in words.
Consider first the list of subsets $\mathcal{L}=\left\{A_{1}, \ldots, A_{m}, A_{1}^{c}, \ldots, A_{m}^{c}\right\}$. From there, generate the list $\mathcal{L}^{\prime}=\left\{B_{1}, \ldots, B_{p}\right\}$ made of all possible intersections of elements of \mathcal{L} (which are subsets of Ω). Of course, this new list is not necessarily made of atoms of \mathcal{F} only. We need to browse the collection and at each item, call it G, we discard it if it is empty or if there exists another element F in the collection such that $F \neq \emptyset, F \subset G$ and $F \neq G$. The remaining elements are the atoms of \mathcal{F}.

Exercise 3. a) The atoms of \mathcal{F} are the singletons $\{x\}$, with $x \in[0,1]$.
b) The answer is no. One can check indeed that the σ-field generated by the sets $\{x\}, x \in[0,1]$ is the list of all countable subsets of $[0,1]$, as well as all the complements of countable subsets of $[0,1]$, which is of course not equal to the list of all Borel subsets of $[0,1]$. In particular, the open intervals are not in the list.
c) $\sigma(\{x\}, x \in[0,1])$ comprises all countable unions of singletons in $[0,1]$, as well as all the complements of these sets. One can check that indeed, such a collection of sets is a σ-field, which is moreover much smaller than $\mathcal{B}([0,1])$.

Exercise 4. a) $\sigma\left(X_{1}\right)=\sigma(\{(i, j): j \in\{1, \ldots, 6\}\}, i \in\{1, \ldots, 6\})$. Atoms of $\sigma\left(X_{1}\right)$ are therefore of the form $\{(i, 1),(i, 2), \ldots,(i, 6)\}$. The σ-field generated by these atoms is simply the collection of all possible unions of them. Similarly, $\sigma\left(X_{2}\right)=\sigma(\{(i, j): i \in\{1, \ldots, 6\}\}, j \in\{1, \ldots, 6\})$.
b) The answer is no. For example, take $B=\{12\}$. Then

$$
\begin{aligned}
& \left\{\omega \in \Omega: X_{1}(\omega)+X_{2}(\omega) \in B\right\}=\left\{(i, j) \in \Omega: X_{1}(i, j)+X_{2}(i, j)=12\right\} \\
& =\{(i, j) \in \Omega: i+j=12\}=\{(6,6)\},
\end{aligned}
$$

which is in neither of the two lists described above.
$X_{1}+X_{2}$ is on the contrary measurable with respect to $\sigma\left(X_{1}, X_{2}\right)$, which is nothing but $\mathcal{F}=\mathcal{P}(\Omega)$.

Exercise 5. a) Consider e.g. X_{1} taking values in $\{0,1\}$ and X_{2} taking values in $\{0,2\}$. Then it is possible to deduce the values of both X_{1} and X_{2} from the sole value of Y, so $\sigma(Y)=\sigma\left(X_{1}, X_{2}\right)$ (as an exercise, write this down formally).
b) Consider e.g. X_{1} taking values in $\{3,5\}$ and X_{2} taking values in $\{7,9\}$. When $Y(\omega)=12$, it is impossible to tell whether $X_{1}(\omega)=3, X_{2}(\omega)=9$ or $X_{1}(\omega)=5, X_{2}(\omega)=7$. The random variable Y carries then less information than the two random variables X_{1}, X_{2} together (again, as an exercise, write this down formally).
c) The answer is no, i.e., $\sigma(Y) \neq \sigma\left(X_{1}, X_{2}\right)$, as when $Y(\omega)=a+b$, we will not be able to tell whether $\omega=\omega_{1}$ or $\omega=\omega_{2}$.

Exercise 6*. a) Use $B=A \cup(B \backslash A)$, where A and $B \backslash A$ are disjoint, as well as $\Omega=A \cup A^{c}$ and $\mathbb{P}(\Omega)=1$.
b) Use $A \cup B=A \cup(B \backslash(A \cap B))$ where A and $B \backslash(A \cap B)$ are disjoint, as well as a).
c) Use $\cup_{n=1}^{\infty} A_{n}=\cup_{n=1}^{\infty} B_{n}$, where $B_{n}=A_{n} \backslash\left(A_{1} \cup \ldots \cup A_{n-1}\right)$; the B_{n} are disjoint, so by axiom (ii) and a),

$$
\mathbb{P}\left(\cup_{n=1}^{\infty} A_{n}\right)=\mathbb{P}\left(\cup_{n=1}^{\infty} B_{n}\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(B_{n}\right) \leq \sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)
$$

d) $\mathbb{P}\left(\cup_{n \geq 1} A_{n}\right)=\mathbb{P}\left(\cup_{n \geq 1}\left(A_{n} \cap A_{n-1}^{c}\right)\right) \stackrel{(*)}{=} \sum_{n=1}^{\infty} \mathbb{P}\left(A_{n} \cap A_{n-1}^{c}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathbb{P}\left(A_{i} \cap A_{i-1}^{c}\right)$
$\stackrel{(* *)}{=} \lim _{n \rightarrow \infty} \mathbb{P}\left(\cup_{i=1}^{n}\left(A_{i} \cap A_{i-1}^{c}\right)\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)$, where $(*)$, (**) follow from the fact that the sets $A_{n} \cap A_{n-1}^{c}$ are disjoint.
e) Using parts a) and d): $\mathbb{P}\left(\cap_{n \geq 1} A_{n}\right)=1-\mathbb{P}\left(\left(\cap_{n \geq 1} A_{n}\right)^{c}\right)=1-\mathbb{P}\left(\cup_{n \geq 1} A_{n}^{c}\right)=1-\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}^{c}\right)=$ $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)$.

