Solutions to Homework 5: 29 March 2022 CS-526 Learning Theory

Exercise 1

1. $f(x) = \max_{1 \le i \le m} f_i(\mathbf{x})$ where $f_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{x} + b_i$ is convex differentiable with gradient $\nabla f_i(\mathbf{x}) = \mathbf{a}_i$. By Claim 14.6, it follows that $\forall \mathbf{x} : \mathbf{a}_i \in \partial f(\mathbf{x})$ where $j \in \arg\max_i f_i(\mathbf{x})$.

2. $f(x) = \max_{1 \leq i \leq m} f_i(\mathbf{x})$ where $f_i(\mathbf{x}) = |\mathbf{a}_i^T \mathbf{x} + b_i|$ is convex subdifferentiable. Fix \mathbf{x} , let $j \in \arg\max_i f_i(\mathbf{x})$ and choose $\mathbf{v} \in \partial f_j(\mathbf{x})$ as follows:

$$\mathbf{v} = \begin{cases} -\mathbf{a}_j & \text{if } \mathbf{a}_j^T \mathbf{x} + b_j < 0, \\ 0 & \text{if } \mathbf{a}_i^T \mathbf{x} + b_i = 0, \\ +\mathbf{a}_j & \text{if } \mathbf{a}_j^T \mathbf{x} + b_j > 0. \end{cases}$$

A straightforward generalization of Claim 14.6 shows that \mathbf{v} is a subgradient of f at \mathbf{x} .

3. Note that the sup is really a maximum as $t \mapsto p(t, \mathbf{x})$ is a continuous function on a compact. Hence $f(\mathbf{x}) = \max_{t \in [0,1]} p(t, \mathbf{x})$ and $\forall t \in [0,1] : \nabla_{\mathbf{x}} p(t, \mathbf{x}) = [1, t, \dots, t^{n-1}]^T \in \mathbb{R}^n$. A straightforward generalization of Claim 14.6 shows that $[1, t(\mathbf{x}), \dots, t(\mathbf{x})^{n-1}]^T \in \partial f(\mathbf{x})$, where $t(\mathbf{x}) \in \arg\max_{t \in [0,1]} p(t, \mathbf{x})$.

Exercise 2

1. v is a subgradient of f at 0 if $\forall u > 0 : f(u) \ge f(0) + (u-0)v$, i.e.,

$$\forall u > 0 : 0 \ge 1 + uv \,. \tag{1}$$

Clearly v must be negative for the later to hold, and if v is negative then $0 \ge 1 + uv \Leftrightarrow u \ge 1/|v|$. Whatever v, (1) cannot hold on the whole interval $[0, +\infty)$. Hence f is not subdifferentiable at 0.

2. v is a subgradient of f at 0 if $\forall u > 0 : f(u) \ge f(0) + (u-0)v$, i.e.,

$$\forall u > 0 : -1 > \sqrt{u}v \,. \tag{2}$$

Clearly v must be negative for the later to hold, and if v is negative then $-1 \ge \sqrt{u}v \Leftrightarrow u \ge 1/v^2$. Whatever v, (2) cannot hold on the whole interval $[0, +\infty)$. Hence f is not subdifferentiable at 0.

Exercise 3

Fix w, u. The function f is λ -strongly convex, so for all $\alpha \in [0,1]$ we have:

$$f((1 - \alpha)\mathbf{w} + \alpha\mathbf{u}) \le (1 - \alpha)f(\mathbf{w}) + \alpha f(\mathbf{u}) - \frac{\lambda}{2}\alpha(1 - \alpha)\|\mathbf{w} - \mathbf{u}\|^{2}$$

$$\Leftrightarrow f(\mathbf{w} + \alpha(\mathbf{u} - \mathbf{w})) - f(\mathbf{w}) \le \alpha \left(f(\mathbf{u}) - f(\mathbf{w}) - \frac{\lambda}{2}(1 - \alpha)\|\mathbf{w} - \mathbf{u}\|^{2}\right)$$
(3)

Let $\mathbf{v} \in \partial f(\mathbf{w})$. Then, $\forall \alpha \in [0,1] : f(\mathbf{w} + \alpha(\mathbf{u} - \mathbf{w})) \ge f(\mathbf{w}) + \langle \alpha(\mathbf{u} - \mathbf{w}), \mathbf{v} \rangle$. Combining this inequality and (3) gives:

$$\langle \alpha(\mathbf{u} - \mathbf{w}), \mathbf{v} \rangle \le \alpha \left(f(\mathbf{u}) - f(\mathbf{w}) - \frac{\lambda}{2} (1 - \alpha) \|\mathbf{w} - \mathbf{u}\|^{2} \right)$$

$$\Leftrightarrow \langle \mathbf{u} - \mathbf{w}, \mathbf{v} \rangle \le f(\mathbf{u}) - f(\mathbf{w}) - \frac{\lambda}{2} (1 - \alpha) \|\mathbf{w} - \mathbf{u}\|^{2}$$

$$\Leftrightarrow \langle \mathbf{w} - \mathbf{u}, \mathbf{v} \rangle \ge f(\mathbf{w}) - f(\mathbf{u}) + \frac{\lambda}{2} (1 - \alpha) \|\mathbf{w} - \mathbf{u}\|^{2}$$

Taking the limit $\alpha \to 0+$ ends the proof: $\langle \mathbf{w} - \mathbf{u}, \mathbf{v} \rangle \ge f(\mathbf{w}) - f(\mathbf{u}) + \frac{\lambda}{2} ||\mathbf{w} - \mathbf{u}||^2$.

Exercise 4

To prove that $\pi_C(\cdot)$ is Lipschiztian, we first show an important property of projection onto a closed convex set:

Lemma 1. If C is a non-empty closed convex subset of a Hilbert space H then $\forall (\mathbf{x}, \mathbf{y}) \in H \times C : \langle \mathbf{x} - \pi_C(\mathbf{x}), \mathbf{y} - \pi_C(\mathbf{x}) \rangle \leq 0$.

Proof. Let $\alpha \in (0,1)$. By definition of $\pi_C(\cdot)$, we have:

$$0 \leq \|\mathbf{x} - (1 - \alpha)\pi_C(\mathbf{x}) - \alpha\mathbf{y}\|^2 - \|\mathbf{x} - \pi_C(\mathbf{x})\|^2$$
$$= \|\mathbf{x} - \pi_C(\mathbf{x}) - \alpha(\mathbf{y} - \pi_C(\mathbf{x}))\|^2 - \|\mathbf{x} - \pi_C(\mathbf{x})\|^2$$
$$= \alpha^2 \|\mathbf{y} - \pi_C(\mathbf{x})\|^2 - 2\alpha\langle\mathbf{x} - \pi_C(\mathbf{x}), \mathbf{y} - \pi_C(\mathbf{x})\rangle.$$

Dividing the final inequality by α and taking the limit $\alpha \to 0$ ends the proof.

We can now prove that $\pi_C(\cdot)$ is 1-Lipschitz. $\forall \mathbf{x}_0, \mathbf{x}_1$:

$$\|\pi_{C}(\mathbf{x}_{0}) - \pi_{C}(\mathbf{x}_{1})\|^{2} = \langle \pi_{C}(\mathbf{x}_{0}) - \pi_{C}(\mathbf{x}_{1}), \pi_{C}(\mathbf{x}_{0}) - \pi_{C}(\mathbf{x}_{1}) \rangle$$

$$= \langle \underline{\pi_{C}(\mathbf{x}_{0}) - \mathbf{x}_{0}, \pi_{C}(\mathbf{x}_{0}) - \pi_{C}(\mathbf{x}_{1})} \rangle + \langle \mathbf{x}_{0} - \pi_{C}(\mathbf{x}_{1}), \pi_{C}(\mathbf{x}_{0}) - \pi_{C}(\mathbf{x}_{1}) \rangle$$

$$\leq \langle \mathbf{x}_{0} - \pi_{C}(\mathbf{x}_{1}), \pi_{C}(\mathbf{x}_{0}) - \pi_{C}(\mathbf{x}_{1}) \rangle$$

$$\leq \langle \mathbf{x}_{1} - \pi_{C}(\mathbf{x}_{1}), \pi_{C}(\mathbf{x}_{0}) - \pi_{C}(\mathbf{x}_{1}) \rangle + \langle \mathbf{x}_{0} - \mathbf{x}_{1}, \pi_{C}(\mathbf{x}_{0}) - \pi_{C}(\mathbf{x}_{1}) \rangle$$

$$\leq \langle \mathbf{x}_{0} - \mathbf{x}_{1}, \pi_{C}(\mathbf{x}_{0}) - \pi_{C}(\mathbf{x}_{1}) \rangle$$

$$\leq \|\mathbf{x}_{0} - \mathbf{x}_{1}\| \|\pi_{C}(\mathbf{x}_{0}) - \pi_{C}(\mathbf{x}_{1})\| \quad \text{(Cauchy-Schwarz inequality)}$$

It directly implies $\|\pi_C(\mathbf{x}_0) - \pi_C(\mathbf{x}_1)\| \le \|\mathbf{x}_0 - \mathbf{x}_1\|$. Note that for $\mathbf{x}_0, \mathbf{x}_1 \in C$ this inequality is an equality, hence it cannot be improved.