Exercise 1

1. $f(x)=\max _{1 \leq i \leq m} f_{i}(\mathbf{x})$ where $f_{i}(\mathbf{x})=\mathbf{a}_{i}^{T} \mathbf{x}+b_{i}$ is convex differentiable with gradient $\nabla f_{i}(\mathbf{x})=\mathbf{a}_{i}$. By Claim 14.6, it follows that $\forall \mathbf{x}: \mathbf{a}_{j} \in \partial f(\mathbf{x})$ where $j \in \arg \max _{i} f_{i}(\mathbf{x})$.
2. $f(x)=\max _{1 \leq i \leq m} f_{i}(\mathbf{x})$ where $f_{i}(\mathbf{x})=\left|\mathbf{a}_{i}^{T} \mathbf{x}+b_{i}\right|$ is convex subdifferentiable. Fix \mathbf{x}, let $j \in \arg \max _{i} f_{i}(\mathbf{x})$ and choose $\mathbf{v} \in \partial f_{j}(\mathbf{x})$ as follows:

$$
\mathbf{v}= \begin{cases}-\mathbf{a}_{j} & \text { if } \mathbf{a}_{j}^{T} \mathbf{x}+b_{j}<0 \\ 0 & \text { if } \mathbf{a}_{i}^{T} \mathbf{x}+b_{i}=0 \\ +\mathbf{a}_{j} & \text { if } \mathbf{a}_{j}^{T} \mathbf{x}+b_{j}>0\end{cases}
$$

A straightforward generalization of Claim 14.6 shows that \mathbf{v} is a subgradient of f at \mathbf{x}.
3. Note that the sup is really a maximum as $t \mapsto p(t, \mathbf{x})$ is a continuous function on a compact. Hence $f(\mathbf{x})=\max _{t \in[0,1]} p(t, \mathbf{x})$ and $\forall t \in[0,1]: \nabla_{\mathbf{x}} p(t, \mathbf{x})=\left[1, t, \ldots, t^{n-1}\right]^{T} \in \mathbb{R}^{n}$. A straightforward generalization of Claim 14.6 shows that $\left[1, t(\mathbf{x}), \ldots, t(\mathbf{x})^{n-1}\right]^{T} \in \partial f(\mathbf{x})$, where $t(\mathbf{x}) \in \arg \max _{t \in[0,1]} p(t, \mathbf{x})$.

Exercise 2

1. v is a subgradient of f at 0 if $\forall u>0: f(u) \geq f(0)+(u-0) v$, i.e.,

$$
\begin{equation*}
\forall u>0: 0 \geq 1+u v \tag{1}
\end{equation*}
$$

Clearly v must be negative for the later to hold, and if v is negative then $0 \geq 1+u v \Leftrightarrow$ $u \geq 1 /|v|$. Whatever v, (1) cannot hold on the whole interval $[0,+\infty)$. Hence f is not subdifferentiable at 0 .
2. v is a subgradient of f at 0 if $\forall u>0: f(u) \geq f(0)+(u-0) v$, i.e.,

$$
\begin{equation*}
\forall u>0:-1 \geq \sqrt{u} v . \tag{2}
\end{equation*}
$$

Clearly v must be negative for the later to hold, and if v is negative then $-1 \geq \sqrt{u} v \Leftrightarrow$ $u \geq 1 / v^{2}$. Whatever v, (2) cannot hold on the whole interval $[0,+\infty)$. Hence f is not subdifferentiable at 0 .

Exercise 3

Fix \mathbf{w}, \mathbf{u}. The function f is λ-strongly convex, so for all $\alpha \in[0,1]$ we have:

$$
\begin{align*}
& f((1-\alpha) \mathbf{w}+\alpha \mathbf{u}) \leq(1-\alpha) f(\mathbf{w})+\alpha f(\mathbf{u})-\frac{\lambda}{2} \alpha(1-\alpha)\|\mathbf{w}-\mathbf{u}\|^{2} \\
\Leftrightarrow & f(\mathbf{w}+\alpha(\mathbf{u}-\mathbf{w}))-f(\mathbf{w}) \leq \alpha\left(f(\mathbf{u})-f(\mathbf{w})-\frac{\lambda}{2}(1-\alpha)\|\mathbf{w}-\mathbf{u}\|^{2}\right) \tag{3}
\end{align*}
$$

Let $\mathbf{v} \in \partial f(\mathbf{w})$. Then, $\forall \alpha \in[0,1]: f(\mathbf{w}+\alpha(\mathbf{u}-\mathbf{w})) \geq f(\mathbf{w})+\langle\alpha(\mathbf{u}-\mathbf{w}), \mathbf{v}\rangle$. Combining this inequality and (3) gives:

$$
\begin{aligned}
& \langle\alpha(\mathbf{u}-\mathbf{w}), \mathbf{v}\rangle \leq \alpha\left(f(\mathbf{u})-f(\mathbf{w})-\frac{\lambda}{2}(1-\alpha)\|\mathbf{w}-\mathbf{u}\|^{2}\right) \\
\Leftrightarrow & \langle\mathbf{u}-\mathbf{w}, \mathbf{v}\rangle \leq f(\mathbf{u})-f(\mathbf{w})-\frac{\lambda}{2}(1-\alpha)\|\mathbf{w}-\mathbf{u}\|^{2} \\
\Leftrightarrow & \langle\mathbf{w}-\mathbf{u}, \mathbf{v}\rangle \geq f(\mathbf{w})-f(\mathbf{u})+\frac{\lambda}{2}(1-\alpha)\|\mathbf{w}-\mathbf{u}\|^{2}
\end{aligned}
$$

Taking the limit $\alpha \rightarrow 0+$ ends the proof: $\langle\mathbf{w}-\mathbf{u}, \mathbf{v}\rangle \geq f(\mathbf{w})-f(\mathbf{u})+\frac{\lambda}{2}\|\mathbf{w}-\mathbf{u}\|^{2}$.

Exercise 4

To prove that $\pi_{C}(\cdot)$ is Lipschiztian, we first show an important property of projection onto a closed convex set:

Lemma 1. If C is a non-empty closed convex subset of a Hilbert space H then $\forall(\mathbf{x}, \mathbf{y}) \in$ $H \times C:\left\langle\mathbf{x}-\pi_{C}(\mathbf{x}), \mathbf{y}-\pi_{C}(\mathbf{x})\right\rangle \leq 0$.
Proof. Let $\alpha \in(0,1)$. By definition of $\pi_{C}(\cdot)$, we have:

$$
\begin{aligned}
0 & \leq\left\|\mathbf{x}-(1-\alpha) \pi_{C}(\mathbf{x})-\alpha \mathbf{y}\right\|^{2}-\left\|\mathbf{x}-\pi_{C}(\mathbf{x})\right\|^{2} \\
& =\left\|\mathbf{x}-\pi_{C}(\mathbf{x})-\alpha\left(\mathbf{y}-\pi_{C}(\mathbf{x})\right)\right\|^{2}-\left\|\mathbf{x}-\pi_{C}(\mathbf{x})\right\|^{2} \\
& =\alpha^{2}\left\|\mathbf{y}-\pi_{C}(\mathbf{x})\right\|^{2}-2 \alpha\left\langle\mathbf{x}-\pi_{C}(\mathbf{x}), \mathbf{y}-\pi_{C}(\mathbf{x})\right\rangle
\end{aligned}
$$

Dividing the final inequality by α and taking the limit $\alpha \rightarrow 0$ ends the proof.
We can now prove that $\pi_{C}(\cdot)$ is 1-Lipschitz. $\forall \mathbf{x}_{0}, \mathbf{x}_{1}$:

$$
\begin{aligned}
\left\|\pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right)\right\|^{2} & =\left\langle\pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right), \pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right)\right\rangle \\
& =\langle\underbrace{\left\langle\pi_{C}\left(\mathbf{x}_{0}\right)-\mathbf{x}_{0}, \pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right)\right\rangle}_{\leq 0}+\left\langle\mathbf{x}_{0}-\pi_{C}\left(\mathbf{x}_{1}\right), \pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right)\right\rangle \\
& \leq\left\langle\mathbf{x}_{0}-\pi_{C}\left(\mathbf{x}_{1}\right), \pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right)\right\rangle \\
& \leq \underbrace{\left\langle\mathbf{x}_{1}-\pi_{C}\left(\mathbf{x}_{1}\right), \pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right)\right\rangle}_{\leq 0}+\left\langle\mathbf{x}_{0}-\mathbf{x}_{1}, \pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right)\right\rangle \\
& \leq\left\langle\mathbf{x}_{0}-\mathbf{x}_{1}, \pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right)\right\rangle \\
& \leq\left\|\mathbf{x}_{0}-\mathbf{x}_{1}\right\|\left\|\pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right)\right\| \quad \text { (Cauchy-Schwarz inequality) }
\end{aligned}
$$

It directly implies $\left\|\pi_{C}\left(\mathbf{x}_{0}\right)-\pi_{C}\left(\mathbf{x}_{1}\right)\right\| \leq\left\|\mathbf{x}_{0}-\mathbf{x}_{1}\right\|$. Note that for $\mathbf{x}_{0}, \mathbf{x}_{1} \in C$ this inequality is an equality, hence it cannot be improved.

