
Homework 10 (Graded Homework 4): due Friday, June 2 2023
CS-526 Learning Theory

Note: The tensor product is denoted by ⊗. In other words, for vectors ~a,~b,~c we have that
~a⊗~b is the square array aαbβ where the superscript denotes the components, and ~a⊗~b⊗ ~c
is the cubic array aαbβcγ. We denote components by superscripts because we need the lower
index to label vectors themselves.

Problem 1: Comparison of tensor rank and multilinear rank

Recall that the “tensor rank” (usually called “rank”) is the smallest R such that the multi-
array Tαβγ can be decomposed as a sum of rank one terms in the form

Tαβγ =
R∑
j=1

aαj b
β
j c
γ
j or equivalently T =

R∑
j=1

~aj ⊗~bj ⊗ ~cj .

This is often denoted rank⊗(T ) = R. On the other hand, the multilinear rank is the tuple
rank�(T ) = (R1, R2, R3) where R1, R2, R3 are the ranks of the three matricizations T(1),
T(2), T(3) defined in class.

1. Show that max rank�(T ) ≤ rank⊗(T ).

Problem 2: Non-unicity of the Tucker decomposition

Let T = (Tαβγ), α = 1, . . . I1, β = 1, . . . I2, γ = 1, . . . I3 an order-three tensor. Suppose
that its multilinear rank is rank�(T ) = (R1, R2, R3) which means that R1, R2, R3 are the
ranks of the three matricizations T(1), T(2), T(3) defined in class. We have seen in class that
any such tensor has a so-called Tucker decomposition (also called higher order singular value
decomposition):

T =

R1,R2,R3∑
p,q,r=1

Gpqr ~up ⊗ ~vq ⊗ ~wr

where each of the matrices [~u1, · · · , ~uR1 ], [~v1, · · · , ~vR2 ], [~w1, · · · , ~wR3 ] are made of orthogonal
unit vectors. G = (Gpqr) is called the core tensor (and is not diagonal in general). In this
problem you will prove that this decomposition is not unique and, in fact, that there exist
an infinity of such decompositions related by orthogonal transformations.

Let M (u) = (M
(u)
pp′ ), M

(v) = (M
(v)
qq′ ) and M (w) = (M

(w)
rr′ ) be three orthogonal matrices of

dimensions R1 ×R1, R2 ×R2 and R3 ×R3. Define the vectors:

~xp′ =

R1∑
p=1

M
(u)
p′p ~up, ~yq′ =

R2∑
p=1

M
(v)
q′q~vq, ~zr′ =

R3∑
p=1

M
(w)
r′r ~wr .
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Show that there exist a core tensor H = (Hpqr) of dimension R1 ×R2 ×R3 such that

T =

R1,R2,R3∑
p,q,r=1

Hpqr ~xp ⊗ ~yq ⊗ ~zr .

Problem 3: Tensor decomposition & estimation of a sensing matrix

Let N ≥ K two positive integers. Define the N ×K real matrix A :=
[
~µ(1) ~µ(2) · · · ~µ(K)

]
where the column vectors ~µ(k) = (µkα)Nα=1, k = 1 . . . K, are (fixed) N -dimensional linearly
independent vectors.

Let ~h = (hk)
K
k=1 be a random vector whose components hk’s are independently (but not

necessarily identically) distributed. We assume that ∀k : E[hk] = E[h3k] = 0 and E[h2k],E[h4k]

are finite positive. We define the excess kurtoses Kk =
E[h4k]
E[h2k]2

− 3. If hk has a zero-mean

Gaussian distribution then Kk = 0, so Kk can be essentially viewed as a measure of non-
Gaussianity.

We are given L observations ~y (`) = (y`α)Nα=1 := A~h(`) where ~h(1),~h(2), . . . ,~h(L) i.i.d.∼ ~h.

Except for what is known on the distribution of ~h, we don’t know anything on the input
vectors ~h(1),~h(2), . . . ,~h(L). The goal of the exercise is to show how to recover the columns of
the sensing matrix A from these L observations.

1. Let ~y := A~h. We define Ŝ and F̂ the empirical estimates (using the L observations
~y (`)) of the second-moment matrix S := E[~y ⊗ ~y] and the fourth-moment tensor F :=
E[~y ⊗ ~y ⊗ ~y ⊗ ~y].

Write down expressions for the components Ŝαβ of Ŝ and F̂αβγδ of F̂ in terms of the
components of ~y (1), ~y (2), . . . , ~y (L).

2. From now on we suppose that Ŝ and F̂ are good estimates of S and F , respectively.
Prove the following identities:

S =
K∑
k=1

E[h2k] ~µ
(k) ⊗ ~µ(k) ;

F =
K∑
k=1

E[h4k] ~µ
(k) ⊗ ~µ(k) ⊗ ~µ(k) ⊗ ~µ(k) +

∑
1≤j 6=k≤K

E[h2j ]E[h2k]
(
~µ(j) ⊗ ~µ(j) ⊗ ~µ(k) ⊗ ~µ(k)

+ ~µ(j) ⊗ ~µ(k) ⊗ ~µ(j) ⊗ ~µ(k)

+ ~µ(j) ⊗ ~µ(k) ⊗ ~µ(k) ⊗ ~µ(j)
)
.

3. We now form the tensor T with components

Tαβγδ := Fαβγδ − SαβSγδ − SαγSβδ − SαδSβγ .

Use the previous question to show that

T =
K∑
k=1

KkE[h2k]
2 ~µ(k) ⊗ ~µ(k) ⊗ ~µ(k) ⊗ ~µ(k) .
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4. Show that S = UDUT with U =
[
~u (1) ~u (2) · · · ~u (K)

]
∈ RN×K a matrix with

orthonormal columns, and D = Diag(d1, d2, . . . , dK) a diagonal matrix with diagonal
entries d1 ≥ d2 ≥ · · · ≥ dK > 0.

5. Define the vectors ~v (k) :=
√

E[h2k]W
T~µ(k), k = 1 . . . K, where W = UD−

1
2 and the

tensor T̃ :=
∑K

k=1Kk ~v (k) ⊗ ~v (k) ⊗ ~v (k) ⊗ ~v (k).

Explain how to obtain the components T̃αβγδ of T̃ from those of T , i.e., write down the

formula relating them. How is this process (the transformation of T into T̃ ) called?

6. As we have seen in class, the set of vectors {~v (1), . . . , ~v (K)} is orthonormal and we can
try to recover them using the tensor power method.

What happens if one of the excess kurtosis Kk is zero?

7. From now on we suppose that all the excess kurtoses are nonzero.

Write a small pseudo-code for the power method applied to T̃ to recover Kk and (up
to a plus or minus sign) ~v (k) for k = 1 . . . K.

8. Assume that we also know the second moments E[h2k] for k = 1 . . . K.

After having recovered Kk and ±~v (k) for k = 1 . . . K with the power method, how do
you recover ±~µ (k) (so up to a plus or minus sign) for k = 1 . . . K?
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