
Solutions to Graded Homework 3
CS-526 Learning Theory

Problem 1: a small application of Jennrich’s theorem

1. (a) M =

(
1 2
2 2

)
.

(b) Using that RRT = I2:

M =

(
1
2

)
⊗
(

1
1

)
+

(
1
0

)
⊗
(

0
1

)
=

(
1 1
2 0

)(
1 1
0 1

)
=

(
1 1
2 0

)
R ·RT

(
1 1
0 1

)
= ~a⊗~b+ ~c⊗ ~d

where [
~a ~c

]
=

(
1 1
2 0

)
R =

(
cos θ + sin θ cos θ − sin θ

2 cos θ −2 sin θ

)
;[

~b ~d
]

=

(
1 0
1 1

)
R =

(
cos θ − sin θ

cos θ + sin θ cos θ − sin θ

)
.

2. We have T = ~a1 ⊗~b1 ⊗ ~c1 + ~a2 ⊗~b2 ⊗ ~c2 + ~a3 ⊗~b3 ⊗ ~c3 where

[
~a1 ~a2 ~a3

]
=

1 0 1
1 1 3
1 2 5

has pairwise independent columns;

[
~b1 ~b2 ~b3

]
=

1 0 0
0 1 1
0 0 1

has linearly independent columns;

and
[
~c1 ~c2 ~c3

]
=

1 0 0
0 1 1
0 1 0

has linearly independent columns.

By Jennrich’s theorem the decomposition is therefore unique and the rank of T is 3.

3. (a) We have T = ~a1⊗~b1⊗~c1 +~a2⊗~b2⊗~c2 where ~c1 = ~c2 = ~c. We cannot invoke Jennrich’s
theorem because the vectors ~c1,~c2 are not pairwise independent.

(b) The tensor rank is obviously less than or equal to 2. We will prove by contradiction that
it cannot be equal to 1.

Assume the rank is one. Then there exist vectors ~e, ~f,~g such that T = ~e⊗ ~f ⊗ ~g. Pick
any vector ~x that is not orthogonal to ~c. We have:

(~e⊗ ~f)(~g T~x) = (~a1 ⊗~b1 + ~a2 ⊗~b2)(~c T~x)

The matrix (~e⊗ ~f)(~g T~x) has rank 0 or 1 while the matrix (~a1 ⊗~b1 + ~a2 ⊗~b2)(~c T~x) has
rank 2 because ~a1 ⊗~b1 + ~a2 ⊗~b2 has rank 2 and ~c T~x 6= 0. This is a contradiction.
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Problem 2: Kronecker and Khatri-Rao products

1) To show that A �KhR B is full column rank, we have to prove that the kernel of the linear
application x 7→ (A �KhR B)x is {0}. Let x ∈ RR with components (x1, x2, · · · , xR) be such that
(A�KhR B)x = 0. Then, ∀α ∈ [I1]:

R∑
r=1

aαr x
rbr = 0 .

Because B is full column rank,
∑R

r=1 a
α
r x

rbr = 0⇒ ∀r ∈ [R] : aαr x
r = 0. Hence, ∀r ∈ [R] : xrar = 0.

A is full column rank so none of its columns can be the all-zero vector. It follows that xr must be
zero for all r ∈ [R], i.e., x = 0. A�KhR B is full column rank.

2) Suppose we are given a tensor (the weights λr that usually appear in the sum are absorbed in
the vectors ar)

X =

R∑
r=1

ar ⊗ br ⊗ cr , (1)

where A = [a1, a2, . . . , aR] ∈ RI1×R, B = [b1, b2, . . . , bR] ∈ RI2×R and C = [c1, c2, . . . , cR] ∈ RI3×R
are full column rank. By Jennrich’s algorithm, the decomposition (??) is unique up to trivial rank
permutation and feature scaling and Jennrich’s algorithm is a way to recover this decomposition.
At the end of the step (5) of the algorithm, we have computed A,B and it remains to recover C.
We now show how the result in question 1) allows to recover C uniquely. For each γ ∈ [I3], define
the slice Xγ as the I1 × I2 matrix with entries (Xγ)αβ = Xαβγ and denote F (Xγ) the I1I2 column
vector with entries F (Xγ)β+I2(α−1) = Xαβγ . We have:

∀(α, β) ∈ [I1]× [I2] : F (Xγ)β+I2(α−1) =
R∑
r=1

aαr b
β
r c
γ
r =

R∑
r=1

(A�KhR B)β+I2(α−1),rcγr .

Therefore, the I1I2 × I3 matrix F (X ) = [F (X1), F (X2), . . . , F (XI3)] satisfies:

F (X ) = (A�KhR B)CT .

Because A�KhRB is full column rank, we can invert the system with the Moore-Penrose pseudoin-
verse: CT = (A�KhR B)†F (X ).

Problem 3: Jennrich’s type algorithm for order 4 tensors

1) To apply Jennrich’s algorithm we need to prove that the matrix E = [c1⊗Kro d1, . . . , cR⊗Kro dR]
is full column rank (A,B are full column rank by assumption). Note that the same proof as the
one in Problem 4 question 1 applies. Nevertheless we repeat the argument here.
Let v ∈ RR a column vector in the kernel of E, i.e., Ev = 0. Then:

∀γ ∈ [I3] :
R∑
r=1

(cγrv
r)dr = 0 ⇒ ∀γ ∈ [I3], ∀r ∈ [R] : cγrv

r = 0 ⇒ Cv = 0 ⇒ v = 0 .

The first implication follows from D being full column rank and the third one from C being full
column rank. We conclude that the kernel of E is {0}: E is full column rank.
We can therefore apply Jennrich’s algorithm.

2) We recover the rank R as well as A, B and E by applying Jennrich’s algorithm to T̃ . From E
we can then determine C and D. Fix r ∈ [R]. Since C is full column rank, there exists αr ∈ [I3]
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such that cαrr 6= 0. As cαrr 6= 0, the I4-dimensional column vector d̃r = cαr dr contained in the rth

column of E recovers dr up to some feature scaling. Doing this for every r ∈ [R] we build the
matrix D̃ =

[
d̃1 d̃2 . . . d̃R

]
that recovers D up to some feature scaling and is full column rank

(because D is). Finally, for every r ∈ R, pick βr ∈ [I4] such that d̃βrr 6= 0 (such βr exists because D̃

is full column rank) and use the entries of E corresponding to cαr d
βr
r , α ∈ [I3], to build the vector

c̃r = dβrr
d̃βrr

cr. The matrix C̃ =
[
c̃1 c̃2 . . . c̃R

]
recovers C up to some feature scaling.
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