Note: The tensor product is denoted by \otimes. In other words, for vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ we have that $\mathbf{a} \otimes \mathbf{b}$ is the square array $a^{\alpha} b^{\beta}$ where the superscript denotes the components, and $\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c}$ is the cubic array $a^{\alpha} b^{\beta} c^{\gamma}$. We often denote components by superscripts because we need the lower index to label vectors themselves.

Problem 1: A multiple choice question

Find the correct answer(s).
Let $w_{i}(\epsilon)$ for $i \in\{1, \ldots, K\}$ be continuous functions of $\epsilon \in[0,1]$. Suppose that for all $\epsilon \in[0,1]$ the $N \times K$ matrices $\left[\begin{array}{lll}\mathbf{a}_{1}+\epsilon \mathbf{a}_{1}^{\prime} & \cdots & \mathbf{a}_{K}+\epsilon \mathbf{a}_{K}^{\prime}\end{array}\right],\left[\begin{array}{llll}\mathbf{b}_{1}+\epsilon \mathbf{b}_{1}^{\prime} & \cdots & \mathbf{b}_{K}+\epsilon \mathbf{b}_{K}^{\prime}\end{array}\right]$ and $\left[\begin{array}{lll}\mathbf{c}_{1}+\epsilon \mathbf{c}_{1}^{\prime} & \cdots & \mathbf{c}_{K}+\epsilon \mathbf{c}_{K}^{\prime}\end{array}\right]$ have rank K. Consider the tensor

$$
T(\epsilon)=\sum_{i=1}^{K} w_{i}(\epsilon)\left(\mathbf{a}_{i}+\epsilon \mathbf{a}_{1}^{\prime}\right) \otimes\left(\mathbf{b}_{i}+\epsilon \mathbf{b}_{1}^{\prime}\right) \otimes\left(\mathbf{c}_{i}+\epsilon \mathbf{c}_{1}^{\prime}\right)
$$

(A) The tensor rank equals K for all $\epsilon \in[0,1]$.
(B) The tensor rank equals K for all $\epsilon \in[0,1]$ such that $\forall i \in\{1, \ldots, K\}: w_{i}(\epsilon) \neq 0$.
(C) It may happen that the tensor rank of the $\operatorname{limit} \lim _{\epsilon \rightarrow 0} T(\epsilon)$ is $K+1$.
(D) If we replace the assumption that $\left[\begin{array}{ccc}\mathbf{c}_{1}+\epsilon \mathbf{c}_{1}^{\prime} & \cdots & \mathbf{c}_{K}+\epsilon \mathbf{c}_{K}^{\prime}\end{array}\right]$ is rank K by the assumption that these vectors are pairwise independent, then the tensor rank can never be K whatever the assumptions on $w_{i}(\epsilon), i=1, \ldots, K$.

Problem 2: A simultaneous diagonalization method for tensor decomposition

Let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ a set of k linearly independent column vectors of dimension n (with real components). We will assume throughout the problem that these vectors have unit norms. Set

$$
T_{2}=\sum_{i=1}^{k} w_{i} \mathbf{a}_{i} \otimes \mathbf{a}_{i}, \quad T_{3}=\sum_{i=1}^{k} w_{i} \mathbf{a}_{i} \otimes \mathbf{a}_{i} \otimes \mathbf{a}_{i}
$$

where $w_{i}, i=1, \ldots, k$, are nonzero real numbers.
We are given the arrays of components $T_{2}^{\alpha \beta}, T_{3}^{\alpha \beta \gamma}, \alpha, \beta, \gamma \in\{1, \ldots, n\}$ and want to determine w_{1}, \cdots, w_{k} as well as $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$. This problem guides you through a method that uses the simultaneous diagonalization of appropriate matrices to do so.

The following multilinear transformation of T_{3} will be used:

$$
T_{3}(I, I, \mathbf{u})=\sum_{i=1}^{k} w_{i}\left(\mathbf{a}_{i} \otimes \mathbf{a}_{i}\right)\left(\mathbf{u}^{T} \mathbf{a}_{i}\right)
$$

where I denotes the identity matrix and \mathbf{u} is an n-dimensional real column vector (\mathbf{u}^{T} is its transpose).

1. Define the $n \times k$ matrix $V=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{k}\end{array}\right]$. Show that

$$
\begin{aligned}
T_{2} & =V \operatorname{Diag}\left(w_{1}, \ldots, w_{k}\right) V^{T} \\
T_{3}(I, I, \mathbf{u}) & =V \operatorname{Diag}\left(w_{1}, \ldots, w_{k}\right) \operatorname{Diag}\left(\mathbf{u}^{T} \mathbf{a}_{1}, \ldots, \mathbf{u}^{T} \mathbf{a}_{k}\right) V^{T}
\end{aligned}
$$

where $\operatorname{Diag}\left(x_{1}, \ldots, x_{k}\right)$ is the diagonal matrix with x_{i} 's on the diagonal.
2. Now we specialize to the case $n=k$. Why is T_{2} an invertible matrix?
3. We choose \mathbf{u} from a continuous distribution over \mathbb{R}^{n}. Still in the case $n=k$.
a) Explain how you can almost surely recover the set of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\}$ (up to a plus or minus sign in front of the \mathbf{a}_{i} 's) from the matrix

$$
M=T_{3}(I, I, \mathbf{u}) T_{2}^{-1}
$$

using standard linear algebra methods.
b) How do you then recover the w_{i} 's?

Problem 3: Kronecker, Khatri-Rao, Hadamard products: check useful identities

We recall a few definitions seen in class. The Kronecker product of two column vectors $\mathbf{b} \in \mathbb{R}^{I}$ and $\mathbf{c} \in \mathbb{R}^{J}$ is the column vector:

$$
\mathbf{c} \otimes_{\mathrm{Kro}} \mathbf{b} \triangleq\left[\begin{array}{llll}
c_{1} \mathbf{b}^{T} & c_{2} \mathbf{b}^{T} & \cdots & c_{J} \mathbf{b}^{T}
\end{array}\right]^{T} .
$$

The Kronecker product of two row vectors \mathbf{d} and \mathbf{e} is the row vector:

$$
\mathbf{d} \otimes_{\mathrm{Kro}} \mathbf{e} \triangleq\left[\begin{array}{llll}
d_{1} \mathbf{e} & d_{2} \mathbf{e} & \cdots & d_{J} \mathbf{e}
\end{array}\right] .
$$

The Khatri-Rao product of two matrices $B=\left[\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{R}\end{array}\right] \in \mathbb{R}^{I \times R}$ and $C=\left[\begin{array}{llll}\mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{R}\end{array}\right] \in \mathbb{R}^{J \times R}$ is the $(I J) \times R$ matrix:

$$
C \otimes_{\mathrm{Khr}} B \triangleq\left[\begin{array}{lll}
\mathbf{c}_{1} \otimes_{\mathrm{Kro}} \mathbf{b}_{1} & \cdots & \mathbf{c}_{R} \otimes_{\mathrm{Kro}} \mathbf{b}_{R}
\end{array}\right]
$$

Finally, the Hadamard product of two matrices (of same dimensions) is the matrix given by the point-wise product of components, i.e, if A, B have matrix elements $a_{i j}$ and $b_{i j}$ then the Hadamard product $A \circ B$ has matrix elements $a_{i j} b_{i j}$.

Let $\mathbf{b}, \mathbf{d} \in \mathbb{R}^{I}$ and $\mathbf{c}, \mathbf{e} \in \mathbb{R}^{J}$ be column vectors. Let $B, D \in \mathbb{R}^{I \times R}$ and $C, E \in \mathbb{R}^{J \times R}$ be four matrices. Check the following identities used in class:

$$
\begin{aligned}
\left(\mathbf{c} \otimes_{\mathrm{Kro}} \mathbf{b}\right)^{T} & =\mathbf{c}^{T} \otimes_{\mathrm{Kro}} \mathbf{b}^{T} ; \\
\left(\mathbf{e} \otimes_{\mathrm{Kro}} \mathbf{d}\right)^{T}\left(\mathbf{c} \otimes_{\mathrm{Kro}} \mathbf{b}\right) & =\left(\mathbf{e}^{T} \mathbf{c}\right)\left(\mathbf{d}^{T} \mathbf{b}\right) ; \\
\left(E \otimes_{\mathrm{Khr}} D\right)^{T}\left(C \otimes_{\mathrm{Khr}} B\right) & =\left(E^{T} C\right) \circ\left(D^{T} B\right) .
\end{aligned}
$$

