Final exam: Solutions

Exercise 1. (20 points) Let $\left(p_{j}, j \geq 1\right)$ be a sequence of non-negative numbers such that $\sum_{j \geq 1} p_{j}=1$. Let also ($X_{n}, n \geq 0$) be a time-homogeneous Markov chain with state space $S=\mathbb{N}=\{0,1,2,3, \ldots\}$ and transition matrix P represented by the following transition graph:

i.e., $p_{0 j}=p_{j}$ and $p_{j, j-1}=1$ for every $j \geq 1$ (and all other terms in the matrix P are equal to 0).
a) Under what minimal condition on the sequence $\left(p_{j}, j \geq 1\right)$ is the chain X irreducible?

Answer: It is necessary and sufficient that there is an infinite number of values of $j \geq 1$ such that $p_{j}>0$.
b) Under what minimal condition on the sequence ($p_{j}, j \geq 1$) is the chain X aperiodic?

Answer: It is necessary and sufficient that $\operatorname{gcd}\left\{k \geq 2: p_{k-1}>0\right\}=1$.
Let us assume from now on that $p_{j}>0$ for every $j \geq 1$. (Hint for the above two questions: Under this condition, the chain X is irreducible and aperiodic).
c) Show that under this assumption, the chain X is always recurrent.

Hint: Let $T_{0}=\inf \left\{n \geq 1: X_{n}=0\right\}$ be the first return time to state 0 .
Compute $f_{00}^{(n)}=\mathbb{P}\left(T_{0}=n \mid X_{0}=0\right)$ for $n \geq 1$ and $f_{00}=\sum_{n \geq 1} f_{00}^{(n)}$.
Answer: Under the assumption made, $f_{00}^{(1)}=0$ and $f_{00}^{(n)}=p_{n-1}$ for $n \geq 2$, so

$$
f_{00}=\sum_{n \geq 1} f_{00}^{(n)}=\sum_{n \geq 2} p_{n-1}=1
$$

therefore X is recurrent.
d) Under what minimal condition on the sequence $\left(p_{j}, j \geq 1\right)$ is the chain X also positive-recurrent?

Hint: Compute $\mathbb{E}\left(T_{0} \mid X_{0}=0\right)$.
Answer: Let us compute:

$$
\mathbb{E}\left(T_{0} \mid X_{0}=0\right)=\sum_{n \geq 1} n f_{00}^{(n)}=\sum_{n \geq 2} n p_{n-1}=\sum_{k \geq 1}(k+1) p_{k}=1+\sum_{k \geq 1} k p_{k}
$$

so this sum should be finite in order for the chain X to be positive-recurrent (and this is the minimal condition).
e) Under the condition found in part d), compute the stationary distribution π of the chain X. Is it also a limiting distribution? Is detailed balance satisfied?
Answer: By d), $\pi_{0}=1 / \mathbb{E}\left(T_{0} \mid X_{0}=0\right)=1 /\left(1+\sum_{k \geq 1} k p_{k}\right)$, and for $j \geq 1$, we have, using the equation $\pi=\pi P$:

$$
\pi_{j}=\pi_{0} p_{j}+\pi_{j+1} \quad \text { so } \quad \pi_{j}-\pi_{j+1}=\pi_{0} p_{j}
$$

therefore (by induction on j), $\pi_{j}=\pi_{0} \sum_{k \geq j} p_{k}$, so

$$
\pi_{j}=\frac{\sum_{k \geq j} p_{k}}{1+\sum_{k \geq 1} k p_{k}}, \quad \text { for } j \geq 1
$$

It is also a limiting distribution, as the chain is aperiodic, but detailed balance is not satisfied, as $p_{0 j}>0$ but $p_{j 0}=0$ for $j>1$.
f) In the particular case where $p_{j}=2^{-j}$ for $j \geq 1$, compute explicitly the stationary distribution π.

Answer: Let us compute

$$
\sum_{k \geq 1} k 2^{-k}=\sum_{k \geq 1}\left(\sum_{j=1}^{k} 1\right) 2^{-k}=\sum_{j \geq 1} \sum_{k \geq j} 2^{-k}=\sum_{j \geq 1} 2^{1-j}=2
$$

so $\pi_{0}=1 / 3$. Besides, $\sum_{k \geq j} 2^{-k}=2^{1-j}$, so $\pi_{j}=2^{1-j} / 3$ for $j \geq 1$.
Note: There are of course other ways to reach the same conclusions for these last two questions!

Exercise 2. ($18+5$ points)

Let ($X_{n}, n \geq 0$) be a time-homogeneous Markov chain with state space $S=\{0,1,2,3\}$ and transition matrix P represented by the following transition graph:

where $0<p, q<1$.
a) Compute the stationary distribution π of the chain. Is detailed balance satisfied for all parameters $0<p, q<1$?

Answer: Trying to solve the detailed balance equation, we find:

$$
\pi_{0} p=\pi_{1} q, \quad \pi_{1}(1-q)=\pi_{2} p, \quad \pi_{2}(1-p)=\pi_{3}(1-q), \quad \pi_{0}(1-p)=\pi_{4} q
$$

which leads to

$$
\pi_{1}=\frac{p}{q} \pi_{0}, \quad \pi_{2}=\frac{1-q}{q} \pi_{0}, \quad \pi_{3}=\frac{1-p}{q} \pi_{0}
$$

so using $\pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}=1$, we obtain

$$
\pi_{0}=\frac{q}{2}, \quad \pi_{1}=\frac{p}{2}, \quad \pi_{2}=\frac{1-q}{2}, \quad \pi_{3}=\frac{1-p}{2}
$$

and yes, detailed balance is always satisfied.
b) Compute the eigenvalues $\lambda_{0} \geq \lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$ of the matrix P.

Hint: What is the rank of P ?
Answer: The rank of P is 2 (as rows 3 and 4 are identical to rows 1 and 2), so two eigenvalues $\lambda_{1}=\lambda_{2}=0$. Besides, $\lambda_{0}=1$ as P is a stochastic matrix, so $1+0+0+\lambda_{3}=\operatorname{Tr}(P)=0$, so $\lambda_{3}=-1$.
c) Let $0 \leq \alpha \leq 1$ and $\widetilde{P}=\alpha I+(1-\alpha) P$ be the transition matrix of the lazy Markov chain ($\widetilde{X}_{n}, n \geq 0$).
c1) Compute the spectral γ of \widetilde{P}, as a function of α.
Answer: The eigenvalues of \widetilde{P} are

$$
\tilde{\lambda}_{0}=1, \quad \tilde{\lambda}_{1}=\alpha, \quad \tilde{\lambda}_{2}=\alpha, \quad \tilde{\lambda}_{3}=2 \alpha-1
$$

so $\gamma=\min (1-\alpha, 2 \alpha, 2(1-\alpha))=\min (1-\alpha, 2 \alpha)$.
c2) For what value of α is γ maximal?
Answer: γ is maximal when $1-\alpha=2 \alpha$, i.e., when $\alpha=1 / 3$ (and then $\gamma=2 / 3$).
Let us assume from now on that α takes the value found in c2).
c3) Deduce an upper bound on $\left\|\widetilde{P}_{0}^{n}-\pi\right\|_{\mathrm{TV}}$.
Answer: Using the bound from the theorem seen in the course, we find:

$$
\left\|\widetilde{P}_{0}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{2 \sqrt{\pi_{0}}} \lambda_{*}^{n}=\frac{1}{\sqrt{2 q}} \frac{1}{3^{n}}\left(\leq \frac{1}{\sqrt{2 q}} \exp (-2 n / 3)\right)
$$

BONUS d) Show that $P^{3}=P$ and deduce by induction that we have the following equality for n even:

$$
\begin{equation*}
\widetilde{P}^{n}=\alpha^{n} I+\frac{1}{2}\left(1-\alpha^{n}\right)\left(P+P^{2}\right) \tag{1}
\end{equation*}
$$

Answer: Checking that $P^{3}=P$ is a direct computation, Note that it implies further that $P^{4}=P^{2}$ and $\left(P+P^{2}\right)\left(P+P^{2}\right)=2\left(P+P^{2}\right)$.
Besides, we find for $n=2$:

$$
\widetilde{P}^{2}=\left(\frac{1}{3} I+\frac{2}{3} P\right)^{2}=\frac{1}{9} I+\frac{4}{9}\left(P+P^{2}\right)
$$

which corresponds to the above formula for $\alpha=1 / 3$. Assume now by induction that the formula holds for n even, Then we obtain:

$$
\begin{aligned}
\widetilde{P}^{n+2} & =\left(\frac{1}{3^{n}} I+\frac{1}{2}\left(1-\frac{1}{3^{n}}\right)\left(P+P^{2}\right)\right)\left(\frac{1}{9} I+\frac{4}{9}\left(P+P^{2}\right)\right) \\
& =\frac{1}{3^{n+2}} I+\left(\frac{1}{2}\left(1-\frac{1}{3^{n}}\right)\left(\frac{1}{9}+\frac{8}{9}\right)+\frac{4}{3^{n+2}}\right)\left(P+P^{2}\right) \\
& =\frac{1}{3^{n+2}} I+\frac{1}{2}\left(1-\frac{1}{3^{n}}+\frac{8}{3^{n+2}}\right)\left(P+P^{2}\right)=\frac{1}{3^{n+2}} I+\frac{1}{2}\left(1-\frac{1}{3^{n+2}}\right)\left(P+P^{2}\right) \quad Q E D
\end{aligned}
$$

e) Use equation (1) to compute the value of $\left\|\widetilde{P}_{0}^{n}-\pi\right\|_{T V}$ for n even.

Answer: By d), the row vector \widetilde{P}_{0}^{n} is given by

$$
\left(\frac{1}{3^{n}}+\left(1-\frac{1}{3^{n}}\right) \frac{q}{2},\left(1-\frac{1}{3^{n}}\right) \frac{p}{2},\left(1-\frac{1}{3^{n}}\right) \frac{1-q}{2},\left(1-\frac{1}{3^{n}}\right) \frac{1-p}{2}\right)
$$

and $\pi=\left(\frac{q}{2}, \frac{p}{2}, \frac{1-q}{2}, \frac{1-p}{2}\right)$, so

$$
\left\|\widetilde{P}_{0}^{n}-\pi\right\|_{\mathrm{TV}}=\frac{1}{2}\left(\frac{1}{3^{n}}-\frac{1}{3^{n}} \frac{q}{2}+\frac{1}{3^{n}} \frac{p}{2}+\frac{1}{3^{n}} \frac{1-q}{2}+\frac{1}{3^{n}} \frac{1-p}{2}\right)=\frac{1}{3^{n}}\left(1-\frac{q}{2}\right)
$$

and observe that this expression is indeed always smaller than the upper bound found in c3).

Exercise 3. (12 points)

Let $\beta_{1}, \beta_{2}>0$. On the set $S=\mathbb{Z}^{2}=\left\{x=\left(x_{1}, x_{2}\right): x_{1} \in \mathbb{Z}, x_{2} \in \mathbb{Z}\right\}$, one defines the distribution:

$$
\pi_{x}=\frac{1}{Z} \exp \left(-\beta_{1} x_{1}^{2}-\beta_{2} x_{2}^{2}\right) \quad \text { for } x=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}
$$

where $Z=\sum_{x \in \mathbb{Z}^{2}} \exp \left(-\beta_{1} x_{1}^{2}-\beta_{2} x_{2}^{2}\right)$.
Define now a base chain on S whose transition probabilities are given by

$$
\psi_{x y}= \begin{cases}\frac{1}{4} & \text { if } y=x \pm e_{1} \text { or } y=x \pm e_{2} \\ 0 & \text { otherwise }\end{cases}
$$

where $e_{1}=(1,0)$ and $e_{2}=(0,1)$. The idea is then to use the Metropolis algorithm in order to sample from π.
a) Is this base chain irreducible? aperiodic? Does it hold that $\psi_{x y}>0$ if and only if $\psi_{y x}>0$?

Answer: The chain is irreducible, not a periodic and ψ is symmetric, so the last condition is satisfied.
b) Is this base chain ergodic?

Answer: No: it is not periodic and it is not positive-recurrent (but this is actually not an issue).
For the rest of this exercise, assume in all your computations that $x_{1}>0$ and $x_{2}>0$.
c) Compute the acceptance probabilities $a_{x y}$, as well as the resulting transition probabilities $p_{x y}$ of the Metropolis chain (not forgetting $p_{x x}$).

Hint: Simplify as much as possible the expression for $a_{x y}$: it will help you for the next questions !

Answer:

$$
a_{x y}=\min \left(1, \frac{\pi_{y}}{\pi_{x}}\right)= \begin{cases}1 & \text { if } y=x-e_{1} \quad \text { or } \quad y=x-e_{2} \\ \exp \left(-\beta_{1}\left(2 x_{1}+1\right)\right) & \text { if } y=x+e_{1} \\ \exp \left(-\beta_{1}\left(2 x_{2}+1\right)\right) & \text { if } y=x+e_{2}\end{cases}
$$

following e.g. from the computation for $y=x+e_{1}$:

$$
a_{x y}=\frac{\exp \left(-\beta_{1}\left(x_{1}+1\right)^{2}-\beta_{2} x_{2}^{2}\right)}{\exp \left(-\beta_{1} x_{1}^{2}-\beta_{2} x_{2}^{2}\right)}=\exp \left(-\beta_{1}\left(2 x_{1}+1\right)\right)
$$

d) If $\beta_{1}<\beta_{2}$ and $x_{1}=x_{2}$, is $a_{x y}$ larger when $y=x+e_{1}$ or when $y=x+e_{2}$?

Answer: $a_{x y}$ is larger when $y=x+e_{1}$ in this case.
e) Is $a_{x y}$ larger when $y=x+e_{1}$ and x_{1} is small, or when $y=x+e_{1}$ and x_{1} is large?

Answer: $a_{x y}$ is larger when $y=x+e_{1}$ and x_{1} is small.
f) Describe the shape of the set of points x (in the quadrant $x_{1} \geq 0, x_{2} \geq 0$) where the acceptance probabilities are roughly equal for both $y=x+e_{1}$ and $y=x+e_{2}$.

Answer: The acceptance probabilities are roughly equal on the axis $\beta_{1} x_{1}=\beta_{2} x_{2}$ (for x_{1}, x_{2} large).

