Homework 2

Exercise 1. a) Which of the following are cdfs?

1.
$$F_1(t) = \exp(-e^{-t}), t \in \mathbb{R}$$
 2. $F_2(t) = \frac{1}{1 - e^{-t}}, t \in \mathbb{R}$

2.
$$F_2(t) = \frac{1}{1-e^{-t}}, t \in \mathbb{R}$$

3.
$$F_3(t) = 1 - \exp(-1/|t|), t \in \mathbb{R}$$
 4. $F_4(t) = 1 - \exp(-e^t), t \in \mathbb{R}$

4.
$$F_4(t) = 1 - \exp(-e^t), t \in \mathbb{R}$$

b) Let now F be a generic cdf. Which of the following functions are guaranteed to be also cdfs?

5.
$$F_5(t) = F(t^2), t \in \mathbb{R}$$

6.
$$F_6(t) = F(t)^2, t \in \mathbb{R}$$

7.
$$F_7(t) = F(1 - \exp(-t)), t \in \mathbb{R}$$
 8. $F_8(t) = \begin{cases} 1 - \exp(-F(t)/(1 - F(t))) & \text{if } F(t) < 1 \\ 1 & \text{if } F(t) = 1 \end{cases}$ $t \in \mathbb{R}$

Exercise 2*. Let X_1, \ldots, X_n be i.i.d. $\sim \mathcal{E}(1)$ random variables (i.e., they are independent and identically distributed, all with the exponential distribution of parameter $\lambda = 1$).

- a) Compute the cdf of $Y_n = \min\{X_1, \dots, X_n\}$.
- b) How do $\mathbb{P}(\{Y_n \leq t\})$ and $\mathbb{P}(\{X_1 \leq t\})$ compare when n is large and t is such that $t \ll \frac{1}{n}$?
- c) Compute the cdf of $Z_n = \max\{X_1, \dots, X_n\}$.
- d) How do $\mathbb{P}(\{Z_n \geq t\})$ and $\mathbb{P}(\{X_1 \geq t\})$ compare when n is large and t is such that $t \gg \log(n)$?

Exercise 3. Let $n \geq 1$, $\Omega = \{1, 2, ..., n\}$, $\mathcal{F} = \mathcal{P}(\Omega)$ and \mathbb{P} be the probability measure on (Ω, \mathcal{F}) defined by $\mathbb{P}(\{\omega\}) = \frac{1}{n}$ on the singletons and extended by additivity to all subsets of Ω .

a) Consider first n=4. Find three subsets $A_1, A_2, A_3 \subset \Omega$ such that

$$\mathbb{P}(A_j \cap A_k) = \mathbb{P}(A_j) \cdot \mathbb{P}(A_k) \quad \forall j \neq k \quad \text{but} \quad \mathbb{P}(A_1 \cap A_2 \cap A_3) \neq \mathbb{P}(A_1) \cdot \mathbb{P}(A_2) \cdot \mathbb{P}(A_3)$$

b) Consider now n=6. Find three subsets $A_1, A_2, A_3 \subset \Omega$ such that

$$\mathbb{P}(A_1 \cap A_2 \cap A_3) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2) \cdot \mathbb{P}(A_3)$$
 but $\exists j \neq k \text{ such that } \mathbb{P}(A_j \cap A_k) \neq \mathbb{P}(A_j) \cdot \mathbb{P}(A_k)$

c) Consider finally a generic probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and three events $A_1, A_2, A_3 \in \mathcal{F}$ such that

$$\mathbb{P}(A_j\cap A_k) = \mathbb{P}(A_j)\cdot \mathbb{P}(A_k) \quad \forall j\neq k \quad \text{and} \quad \mathbb{P}(A_1\cap A_2\cap A_3) = \mathbb{P}(A_1)\cdot \mathbb{P}(A_2)\cdot \mathbb{P}(A_3)$$

Show that A_1, A_2, A_3 are independent according to the definition given in the course.

Exercise 4. Let X_1, X_2 be two i.i.d. random variables such that $\mathbb{P}(\{X_i = +1\}) = \mathbb{P}(\{X_i = -1\}) = \mathbb{P}(\{X_i = -1\})$ 1/2 for i = 1, 2. Let also $Y = X_1 + X_2$ and $Z = X_1 - X_2$.

- a) Are Y and Z independent?
- b) Same question with X_1, X_2 i.i.d. $\sim \mathcal{N}(0,1)$ random variables (use here the change of variable formula in order to compute the joint distribution of Y and Z).