Solutions to Homework 2

Exercise 1. a) 1. true, 2. false, 3. false, 4. true b) 5. false, 6. true, 7. false, 8. true.

Exercise 2*. a) We have

$$
\begin{aligned}
\mathbb{P}\left(\left\{Y_{n} \leq t\right\}\right) & =1-\mathbb{P}\left(\left\{Y_{n}>t\right\}\right)=1-\mathbb{P}\left(\left\{\min \left\{X_{1}, \ldots, X_{n}\right\}>t\right\}\right)=1-\mathbb{P}\left(\cap_{j=1}^{n}\left\{X_{j}>t\right\}\right) \\
& =1-\prod_{j=1}^{n} \mathbb{P}\left(\left\{X_{j}>t\right\}\right)=1-\mathbb{P}\left(\left\{X_{1}>t\right\}\right)^{n}
\end{aligned}
$$

where the last two equalities follow from the assumption that the X 's are i.i.d. Therefore,

$$
\mathbb{P}\left(\left\{Y_{n} \leq t\right\}\right)=1-(\exp (-t))^{n}=1-\exp (-n t)
$$

b) Under the assumptions made, n is large and t is such that $n t \ll 1$, so using Taylor's expansion $\exp (-x) \simeq 1-x$, we obtain

$$
\mathbb{P}\left(\left\{Y_{n} \leq t\right\}\right) \simeq 1-(1-n t)=n t \quad \text { while } \quad \mathbb{P}\left(\left\{X_{1} \leq t\right\}\right)=1-\exp (-t) \simeq t
$$

and therefore $\mathbb{P}\left(\left\{Y_{n} \leq t\right\}\right) \simeq n \mathbb{P}\left(\left\{X_{1} \leq t\right\}\right)$.
c) We have similarly

$$
\begin{aligned}
\mathbb{P}\left(\left\{Z_{n} \geq t\right\}\right) & =1-\mathbb{P}\left(\left\{Z_{n}<t\right\}\right)=1-\mathbb{P}\left(\left\{\max \left\{X_{1}, \ldots, X_{n}\right\}<t\right\}\right)=1-\mathbb{P}\left(\cap_{j=1}^{n}\left\{X_{j}<t\right\}\right) \\
& =1-\prod_{j=1}^{n} \mathbb{P}\left(\left\{X_{j}<t\right\}\right)=1-\mathbb{P}\left(\left\{X_{1}<t\right\}\right)^{n}=1-(1-\exp (-t))^{n}
\end{aligned}
$$

d) Under the assumptions made, n is large and t is such that $n \exp (-t) \ll 1$, so using again the same Taylor expansion as above, we obtain

$$
\mathbb{P}\left(\left\{Z_{n} \geq t\right\}\right) \simeq 1-(1-n \exp (-t))=n \exp (-t) \quad \text { while } \quad \mathbb{P}\left(\left\{X_{1} \geq t\right\}\right)=\exp (-t)
$$

and therefore $\mathbb{P}\left(\left\{Z_{n} \geq t\right\}\right) \simeq n \mathbb{P}\left(\left\{X_{1} \geq t\right\}\right)$.

Exercise 3. a) Here are 3 possible subsets A_{1}, A_{2}, A_{3} of $\Omega=\{1,2,3,4\}$: $A_{1}=\{1,2\}, A_{2}=\{1,3\}$ and $A_{3}=\{1,4\}$. We check that

$$
\mathbb{P}\left(A_{j}\right)=\frac{1}{2} \quad \forall j \quad \text { and } \quad \mathbb{P}\left(A_{j} \cap A_{k}\right)=\frac{1}{4}=\mathbb{P}\left(A_{j}\right) \cdot \mathbb{P}\left(A_{k}\right) \quad \forall j \neq k
$$

but

$$
\mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{1}{4} \neq \frac{1}{8}=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdot \mathbb{P}\left(A_{3}\right)
$$

b) Here are 3 possible subsets A_{1}, A_{2}, A_{3} of $\Omega=\{1,2,3,4,5,6\}: A_{1}=\{1,2,3\}, A_{2}=\{3,4,5\}$ and $A_{3}=\{1,3,4,6\}$. We check that

$$
\mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{1}{6}=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{3}=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdot \mathbb{P}\left(A_{3}\right)
$$

but

$$
\mathbb{P}\left(A_{1} \cap A_{2}\right)=\frac{1}{6} \neq \frac{1}{4}=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right)
$$

c) Using the assumptions made, we check successively (the roles of A_{1}, A_{2}, A_{3} being permutable):

$$
\begin{aligned}
\mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3}^{c}\right) & =\mathbb{P}\left(A_{1} \cap A_{2}\right)-\mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right)-\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdot \mathbb{P}\left(A_{3}\right) \\
& =\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdot\left(1-\mathbb{P}\left(A_{3}\right)\right)=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdot \mathbb{P}\left(A_{3}^{c}\right) \\
\mathbb{P}\left(A_{1} \cap A_{2}^{c} \cap A_{3}^{c}\right) & =\mathbb{P}\left(A_{1} \cap A_{3}^{c}\right)-\mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3}^{c}\right)=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{3}^{c}\right)-\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdot \mathbb{P}\left(A_{3}^{c}\right) \\
& =\mathbb{P}\left(A_{1}\right) \cdot\left(1-\mathbb{P}\left(A_{2}\right)\right) \cdot \mathbb{P}\left(A_{3}^{c}\right)=\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}^{c}\right) \cdot \mathbb{P}\left(A_{3}^{c}\right) \\
\mathbb{P}\left(A_{1}^{c} \cap A_{2}^{c} \cap A_{3}^{c}\right) & =\mathbb{P}\left(A_{2}^{c} \cap A_{3}^{c}\right)-\mathbb{P}\left(A_{1} \cap A_{2}^{c} \cap A_{3}^{c}\right)=\mathbb{P}\left(A_{2}^{c}\right) \cdot \mathbb{P}\left(A_{3}^{c}\right)-\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}^{c}\right) \cdot \mathbb{P}\left(A_{3}^{c}\right) \\
& =\left(1-\mathbb{P}\left(A_{1}\right)\right) \cdot \mathbb{P}\left(A_{2}^{c}\right) \cdot \mathbb{P}\left(A_{3}^{c}\right)=\mathbb{P}\left(A_{1}^{c}\right) \cdot \mathbb{P}\left(A_{2}^{c}\right) \cdot \mathbb{P}\left(A_{3}^{c}\right)
\end{aligned}
$$

Exercise 4. a) No. Even though it is easily shown that Y and Z are uncorrelated random variables (i.e., that their covariance is zero), they are not independent. Here is a counter-example: $\mathbb{P}(\{Y=+2\})=\mathbb{P}(\{Z=+2\})=1 / 4$, but $\mathbb{P}(\{Y=+2, Z=+2\})=0$. So we have found two Borel sets $B_{1}=\{+2\}$ and $B_{2}=\{+2\}$ such that

$$
\mathbb{P}\left(\left\{Y \in B_{1}, Z \in B_{2}\right\}\right) \neq \mathbb{P}\left(\left\{Y \in B_{1}\right\}\right) \cdot \mathbb{P}\left(\left\{Z \in B_{2}\right\}\right)
$$

b) Yes. In this case again, one checks easily that Y and Z are uncorrelated. Let us now compute their joint pdf: the joint pdf of X_{1} and X_{2} is given by

$$
p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \exp \left(-\frac{x_{1}^{2}+x_{2}^{2}}{2}\right)
$$

Making now the change of variables $y=x_{1}+x_{2}, z=x_{1}-x_{2}$, or equivalently $x_{1}=\frac{y+z}{2}, x_{2}=\frac{y-z}{2}$, we obtain

$$
x_{1}^{2}+x_{2}^{2}=\left(\frac{y+z}{2}\right)^{2}+\left(\frac{y-z}{2}\right)^{2}=\frac{y^{2}+z^{2}}{2}
$$

and the Jacobian of this linear transformation is given by

$$
J(y, z)=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x_{1}}{\partial y} & \frac{\partial x_{2}}{\partial y} \\
\frac{\partial x_{1}}{\partial z} & \frac{\partial x_{2}}{\partial z}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right)=-\frac{1}{2}
$$

so that

$$
p_{Y, Z}(y, z)=p_{X_{1}, X_{2}}\left(x_{1}(y, z), x_{2}(y, z)\right) \cdot|J(y, z)|=\frac{1}{4 \pi} \exp \left(-\frac{y^{2}+z^{2}}{4}\right)
$$

from which we deduce that Y and Z are independent $\mathcal{N}(0,2)$ random variables.

