Advanced Probability and Applications

Solutions to Homework 3

Exercise 1. a) In this case,

$$\mathbb{P}^{(1)}(\{X_1 \in B_1, X_2 \in B_2\}) = \mu(B_1) \cdot \mu(B_2) = \mathbb{P}^{(1)}(\{X_1 \in B_1\}) \cdot \mathbb{P}^{(1)}(\{X_2 \in B_2\})$$

The random variables X_1 and X_2 are therefore independent and identically distributed (i.i.d.).

b) In this case,

$$\mathbb{P}^{(2)}(\{X_1 \in B_1, X_2 \in B_2\}) = \mu(B_1 \cap B_2)$$

Note first that whenever $B_1 \cap B_2 = \emptyset$, the above probability is zero, so it can never be the case that X_1, X_2 take values simultaneously in disjoint sets B_1, B_2 . As this must hold for any disjoint sets B_1, B_2 , it holds in particular for non-intersecting intervals $]a_1, b_1[,]a_2, b_2[$. This is to say that $\mathbb{P}^{(2)}(\{(X_1, X_2) \in R\}) = 0$ for any open rectangle $R \subset \mathbb{R}^2$ not touching the diagonal $\Delta = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 = x_2\}$. From this, one deduces that $\mathbb{P}^{(2)}(\{(X_1, X_2) \in B\}) = 0$ for any open set B not touching the diagonal, which further implies that $\mathbb{P}^{(2)}(\{(X_1, X_2) \in \Delta\}) = 1$, i.e., that $\mathbb{P}^{(2)}(\{X_1 = X_2\}) = 1$.

NB: Please note that in both cases, the two random variables X_1, X_2 have the same distribution, but in one case, they are independent, while in the other, they are the same random variable.

Exercise 2. By the formula seen in class, we have:

$$p_{X_1+X_2}(t) = \int_{\mathbb{R}} dx_1 \, p_{X_1}(x_1) \, p_{X_2}(t-x_1) = \int_{\mathbb{R}} dx_1 \, \frac{1}{\sqrt{2\pi}} \, \exp(-x_1^2/2) \, \frac{1}{\sqrt{2\pi}} \, \exp(-(t-x_1)^2/2)$$
$$= \frac{1}{\sqrt{2\pi}} \exp(-t^2/2) \int_{\mathbb{R}} dx_1 \, \frac{1}{\sqrt{2\pi}} \, \exp(tx_1 - x_1^2)$$
$$= \frac{1}{\sqrt{2\pi}} \exp(-t^2/2) \int_{\mathbb{R}} dx_1 \, \frac{1}{\sqrt{2\pi}} \, \exp(-(x_1 - t/2)^2) \, \exp(t^2/4)$$
$$= \frac{1}{\sqrt{4\pi}} \exp(-t^2/4) \int_{\mathbb{R}} dx_1 \, \frac{1}{\sqrt{\pi}} \, \exp(-(x_1 - t/2)^2)$$

The integral on the right-hand side is equal to 1, as the integrand is the pdf of a $\mathcal{N}(t/2, 1/2)$ random variable, so we remain with

$$p_{X_1+X_2}(t) = \frac{1}{\sqrt{4\pi}} \exp(-t^2/4), \quad t \in \mathbb{R}$$

which shows that $X_1 + X_2$ is a $\mathcal{N}(0,2)$ random variable.

Exercise 3*. a) We have

$$\mathbb{E}(Y) = \mathbb{E}(X^a) = \int_0^{+\infty} x^a \,\lambda \,\exp(-\lambda x) \,dx < +\infty \quad \text{if and only if} \quad a > -1$$

b) Likewise:

$$\mathbb{E}(Y^2) = \mathbb{E}(X^{2a}) = \int_0^{+\infty} x^{2a} \lambda \, \exp(-\lambda x) \, dx < +\infty \quad \text{if and only if} \quad a > -\frac{1}{2}$$

c) Therefore, c1) $\operatorname{Var}(Y) = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2$ is well defined and finite $\forall a > -\frac{1}{2}$; c2) $\operatorname{Var}(Y)$ is well defined but takes the value $+\infty$ for $-\frac{1}{2} \ge a > -1$, and c3) $\operatorname{Var}(Y)$ is ill-defined (indetermination of the type $\infty - \infty$) for $a \le -1$.

d) The only integer values of a for which $\mathbb{E}(Y)$ and $\operatorname{Var}(Y)$ are well-defined are non-negative values. For a = 0, we have $Y = X^0 = 1$, so $\mathbb{E}(Y) = 1$ and $\operatorname{Var}(Y) = 0$. For $a \ge 1$, we obtain by integration by parts:

$$\mathbb{E}(Y) = \mathbb{E}(X^a) = \int_0^{+\infty} x^a \,\lambda \,\exp(-\lambda x) \,dx$$
$$= \int_0^{+\infty} \frac{a}{\lambda} \,x^{a-1} \,\lambda \,\exp(-\lambda x) \,dx = \dots = \frac{a!}{\lambda^a} \cdot 1$$

 \mathbf{SO}

$$\mathbb{E}(Y^2) = \mathbb{E}(X^{2a}) = \frac{(2a)!}{\lambda^{2a}}$$
 and $\operatorname{Var}(Y) = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2 = \frac{(2a)! - (a!)^2}{\lambda^{2a}}$

Exercise 4. First note that as $X \sim -X$, it holds that $\mathbb{P}(\{X \ge 0\}) \ge \frac{1}{2}$ and $\mathbb{E}(X) = 0$. a) $\operatorname{Cov}(X, Y) = \mathbb{E}(X \operatorname{1}_{\{X \ge 0\}}) \ge 0$ as $X \operatorname{1}_{\{X \ge 0\}}$ is a non-negative random variable.

b) Using the suggested inequality, we find

$$\operatorname{Cov}(X,Y) \le \sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)} = \sqrt{1} \sqrt{\mathbb{P}(\{X \ge 0\}) - \mathbb{P}(\{(X \ge 0\})^2} \le \sqrt{\frac{1}{4}} = \frac{1}{2} = C$$

as $\mathbb{P}(\{X \ge 0\}) - \mathbb{P}(\{(X \ge 0\})^2 \le \frac{1}{4} \text{ (which is maximized when } \mathbb{P}(\{X \ge 0\}) = \frac{1}{2}).$

c) The computation gives

$$\operatorname{Cov}(X,Y) = \mathbb{E}(X \ 1_{\{X \ge 0\}}) = \int_0^{+\infty} x \ \frac{1}{\sqrt{2\pi}} \ \exp(-x^2/2) \ dx = \frac{1}{\sqrt{2\pi}} \left(-\exp(-x^2/2)\right) \bigg|_{x=0}^{x=+\infty} = \frac{1}{\sqrt{2\pi}}$$

(clearly satisfying the above two inequalities)

d) The answer to the first question is yes: take X such that $\mathbb{P}(\{X = +1\}) = \mathbb{P}(\{X = -1\}) = \frac{1}{2}$ (verifying $X \sim -X$, $\operatorname{Var}(X) = 1$ and $\operatorname{Cov}(X, Y) = \frac{1}{2}$).

e) The answer to the first question is no, but the one to the second is yes: consider X_n such that $\mathbb{P}(\{X_n = n\}) = \mathbb{P}(\{X_n = -n\}) = \frac{1}{2n^2}$ and $\mathbb{P}(\{X_n = 0\}) = 1 - \frac{1}{n^2}$. Then $X_n \sim -X_n$ and $\operatorname{Var}(X_n) = 1$ for every n, and $\operatorname{Cov}(X_n, Y_n) = \mathbb{E}(X_n \mathbf{1}_{\{X_n \ge 0\}}) = n \frac{1}{2n^2} = \frac{1}{2n} \xrightarrow[n \to \infty]{} 0$.

Exercise 5. a) Using the formula given in the problem set, we obtain:

$$\mathbb{E}(X) = \int_0^{+\infty} \exp(-\lambda t) \, dt = \frac{1}{\lambda}$$

b) Using the formula given in the problem set together with the fact that X is integer-valued, we obtain:

$$\mathbb{E}(X) = \sum_{k \ge 0} \int_{k}^{k+1} \mathbb{P}(\{X \ge t\}) \, dt = \sum_{k \ge 0} \int_{k}^{k+1} \mathbb{P}(\{X \ge k+1\}) \, dt = \sum_{k \ge 0} \mathbb{P}(\{X \ge k+1\}) = \sum_{k \ge 1} \mathbb{P}(\{X \ge k\})$$

c) Applying the above formula, we obtain in the first case $(X \sim \text{Bern}(p))$:

$$\mathbb{E}(X) = \mathbb{P}(\{X \ge 1\}) = p$$

In the second case $(X \sim \text{Geom}(p))$, we obtain:

$$\mathbb{E}(X) = \sum_{k \ge 1} \sum_{m \ge k} p^m (1-p) = \sum_{k \ge 1} p^k \sum_{m \ge k} p^{m-k} (1-p) = \sum_{k \ge 1} p^k \frac{1}{1-p} 1 - p = \frac{1}{1-p} - 1 = \frac{p}{1-p}$$