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Solutions to Homework 4

Exercise 1*. a) i) From the course, we know that if E(|X|) < +∞, then φX is continuously
differentiable on R. Using the contraposition, we deduce that E(|X|) = +∞ here.

a) ii) From the course again, the fact that φX is integrable on R implies that X admits a pdf pX .

b) By the inversion formula seen in class, we have
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This pdf is the that of a (centered) Cauchy distribution with parameter λ (also known as Lorentz
distribution in physics). The word “centered” is a bit misleading here, as we have seen in part a)i)
that E(|X|) = +∞ (which can also been checked directly from the expression of pX), so that E(X)
is ill-defined. Nevertheless, the pdf appears to have a peak clearly centered in x = 0 here, and
writing E(X) = 0 can actually be justified via a more general definition of expectation. Besides,
the parameter λ > 0 is connected to the width of the peak, but is by no means connected to the
standard deviation of the random variable X, which is truly infinite.

c) Using the change of variable formula, we obtain

pY (x) = p1/X(x) = pX
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so we see that Y is again a Cauchy random variable, with parameter 1/λ.

d) By the factorization property of characteristic functions, we obtain

φX1+...+Xn(t) =
∏n
i=1 φXi(t) = (φX(t))n = exp(−λn|t|)

so X1 + . . . + Xn is also a Cauchy random variable with parameter λn, and Zn = X1+...+Xn
n is a

Cauchy random variable with parameter λ, for every n ≥ 1. Similarly, we obtain, using part b),

φ1/X1+...+1/Xn
(t) = (φ1/X(t))n = exp(−n|t|/λ)

so 1/X1+. . .+1/Xn is a Cauchy random variable with parameter n/λ. Therefore, again by part b),
1

1/X1+...+1/Xn
is a Cauchy random variable with parameter λ/n and Wn = n

1/X1+...+1/Xn
is (again)

a Cauchy random variable with parameter λ.

e) The first oddity of the above results is that the empirical average Zn = X1+...+Xn
n does not

converge to a limit as n goes to infinity. One reason for this is that E(|X|) = +∞, so the law of
large numbers does not hold, as we shall see later in the course. The second oddity is that the sum
of an arbitrary number of Cauchy random variables is still a Cauchy random variable. The other
well known distribution sharing this property is the Gaussian distribution, but that’s basically it,
as this property is an exception among probability distributions. The third oddity is that the arith-
metic mean Zn of the random variables X1, . . . , Xn has the same distribution as their harmonic
mean Wn. However, as we deal here with random variables taking positive and negative values, the
classical inequality “arithmetic mean ≥ harmonic mean” does not hold, so there is no contradiction.
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Exercise 2. a) Option 1: by the assumptions made, Cov(X1 + X2, X1 − X2) = Var(X1) +
Cov(X2, X1)−Cov(X1, X2)−Var(X2) = Var(X1)−Var(X2) = 0. Besides, asX1, X2 are independent
Gaussian random variables, X = (X1, X2) is a Gaussian random vector, so (X1 +X2, X1 −X2) is
also a Gaussian random vector whose components are uncorrelated, and therefore independent, by
Proposition 6.8 of the course.

Option 2 is to show directly that

E(eit1(X1+X2)+it2(X1−X2)) = E(eit1(X1+X2))E(eit2(X1−X2)) ∀t1, t2 ∈ R

as this would imply independence of X1 +X2 and X1 −X2. We check indeed that

E(eit1(X1+X2)+it2(X1−X2)) = E(ei(t1+t2)X1+i(t1−t2)X2))

= E(ei(t1+t2)X1)E(ei(t1−t2)X2) = eiµ1(t1+t2)−σ
2
1(t1+t2)

2/2 eiµ2(t1−t2)−σ
2
2(t1−t2)2/2

Because of the assumption made (σ21 = σ22 = σ2), the above expression is further equal to

= ei(µ1+µ2)t1+i(µ1−µ2)t2−σ
2(t21+t

2
2) = ei(µ1+µ2)t1−σ

2t21 ei(µ1−µ2)t2−σ
2t22

= E(eit1(X1+X2))E(eit2(X1−X2))

which proves the claim.

b) 1. Skipped. Just note that closing our eyes, we could compute

φ′X(t) = iE(X eitX) and φ′′X(t) = −E(X2eitX), t ∈ R

and deduce from there that indeed, if E(X2) < +∞, then φX is twice continuously differentiable.
As a by-product, we obtain the relation

φ′′X(0) = −E(X2)

from the second formula evaluated in t = 0.

2. Skipped.

3. By the assumptions made, we obtain

E(eit1(X1+X2)+it2(X1−X2)) = E(eit1(X1+X2))E(eit2(X1−X2))

and also

E(eit1(X1+X2)+it2(X1−X2)) = E(ei(t1+t2)X1+i(t1−t2)X2) = φX1(t1 + t2)φX2(t1 − t2)
so

log φX1(t1 + t2) + log φX2(t1 − t2) = logE(eit1(X1+X2)) + logE(eit2(X1−X2)) = g1(t1) + g2(t2)

proving the claim.

4. Differentiating first the equality with respect to t1, we obtain

f ′1(t1 + t2) + f ′2(t1 − t2) = g′1(t1)

and then with respect to t2:
f ′′1 (t1 + t2)− f ′′2 (t1 − t2) = 0
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Setting t1 = t2 = t
2 leads to f ′′1 (t) = f ′′2 (0), and setting t1 = −t2 = t

2 leads to f ′′2 (t) = f ′′1 (0). As
these equalities are satisfied for arbitrary t ∈ R, this says that the second derivatives of both f1
and f2 are constant functions, therefore that both f1 and f2 are polynomials of degree less than or
equal to 2.

5. The assumption is that log φX(t) = at2 + bt+ c for t ∈ R. Using the hint and writing µ = E(X),
σ2 = Var(X), we obtain successively:

ec = φX(0) = 1 so c = 0

b = φ′X(0) = iµ so b = iµ

2a+ b2 = φ′′X(0) = −E(X2) = −(µ2 + σ2) so a = −σ2/2

Therefore, φX(t) = eiµt−σ
2t2/2, which is the characteristic function of a Gaussian.

6. As X1, X2 are independent and Gaussian, this implies that (X1, X2) is a Gaussian vector, i.e.,
that X1, X2 are jointly Gaussian. By the assumptions made, we also have

0 = Cov(X1+X2, X1−X2) = Var(X1)+Cov(X2, X1)−Cov(X1, X2)−Var(X2) = Var(X1)−Var(X2)

so Var(X1) = Var(X2) [note in passing that we did not use here the assumption that X1 and X2

are uncorrelated]. This finally completes the proof of the result stated in part b).
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