Advanced Probability and Applications

Solutions to Homework 5

Exercise 1. a) Using $\psi(x) = x^2$ or $\psi(x) = \sigma^2 + x^2$ in Chebyshev's inequality leads to respectively

$$\mathbb{P}(\{X \ge t\}) \le \frac{\sigma^2}{t^2} \quad \text{and} \quad \mathbb{P}(\{X \ge t\}) \le \frac{2\sigma^2}{\sigma^2 + t^2}$$

which is not what we want. Using the hint (with $b \ge 0$ in order to satisfy the hypotheses), we obtain

$$\mathbb{P}(\{X \ge t\}) \le \frac{\mathbb{E}((X+b)^2)}{(t+b)^2} = \frac{\sigma^2 + b^2}{(t+b)^2}$$

Optimizing over the parameter b, we find that best possible bound is obtained by setting $b^* = \frac{\sigma^2}{t}$ (which is non-negative), leading to

$$\mathbb{P}(\{X \ge t\}) \le \frac{\sigma^2}{\sigma^2 + t^2}$$

b) Using Cauchy-Schwarz's inequality with the random variables X and $Y = 1_{\{X > t\}}$, we obtain

$$\mathbb{E}(X \, \mathbb{1}_{\{X>t\}})^2 \le \mathbb{E}(X^2) \, \mathbb{P}(\{X>t\})$$

On the other hand, we have $\mathbb{E}(X 1_{\{X > t\}}) = \mathbb{E}(X) - \mathbb{E}(X 1_{\{X \le t\}}) \ge \mathbb{E}(X) - t$, therefore the result.

Exercise 2*. a) Let us compute for $\varepsilon > 0$:

$$\mathbb{P}(\{|Y_n - 0| > \varepsilon\}) \le \mathbb{P}(\{Y_n > 0\}) = \mathbb{P}(\{Y_n = 1\}) = \prod_{j=1}^n \mathbb{P}(\{X_j = 1\})$$
$$= \prod_{j=1}^n \left(1 - \frac{1}{(j+1)^\alpha}\right) \simeq \exp\left(-\sum_{j=1}^n \frac{1}{(j+1)^\alpha}\right)$$

where the hint was used in the last (approximate) equality. If $\alpha > 1$, then $\sum_{j=1}^{n} \frac{1}{(j+1)^{\alpha}}$ converges to a fixed value $< +\infty$ as $n \to \infty$, so $\mathbb{P}(\{Y_n > 0\})$ does not converge to 0 as $n \to \infty$. On the contrary if $0 < \alpha < 1$, then $\sum_{n=1}^{n} \frac{1}{(1-\alpha)^n} \to +\infty$ in which case $\mathbb{P}(\{Y_n > 0\}) \to 0$, so

On the contrary, if $0 < \alpha \leq 1$, then $\sum_{j=1}^{n} \frac{1}{(j+1)^{\alpha}} \xrightarrow[n \to \infty]{} +\infty$, in which case $\mathbb{P}(\{Y_n > 0\}) \xrightarrow[n \to \infty]{} 0$, so $Y_n \xrightarrow[n \to \infty]{} 0$ in this case.

b) The answer is yes. Indeed, we have $\mathbb{E}((Y_n - 0)^2) = \mathbb{E}(Y_n^2) = \mathbb{P}(\{Y_n = 1\})$, so $Y_n \xrightarrow[n \to \infty]{} 0$ if and only if $Y_n \xrightarrow[n \to \infty]{} 0$.

c) The answer is again yes. Indeed, if for a given realization ω , $Y_n(\omega) = 0$, then $Y_m(\omega) = 0$ for every $m \ge n$, and therefore $\lim_{n\to\infty} Y_n(\omega) = 0$. This implies that

$$\mathbb{P}(\{\lim_{n\to\infty} Y_n = 0\}) \ge \mathbb{P}(\{Y_n = 0\})$$

for any fixed value of $n \ge 1$. If $0 < \alpha \le 1$, we have seen in question a) that $\mathbb{P}(\{Y_n = 0\}) \xrightarrow[n \to \infty]{} 1$. So the above inequality implies that $Y_n \xrightarrow[n \to \infty]{} 0$ almost surely in this case. *Remark.* Please note finally that when $\alpha > 1$, convergence in probability does not hold, so automatically in this case, quadratic convergence and almost sure convergence do not hold either.

Exercise 3. a) By independence, we obtain

$$\mathbb{P}\left(\bigcap_{n\geq 1}A_n^c\right) = \prod_{n\geq 1}\mathbb{P}(A_n^c) = \prod_{n\geq 1}(1-\mathbb{P}(A_n)) \le \prod_{n\geq 1}\exp(-\mathbb{P}(A_n)) = \exp\left(-\sum_{n\geq 1}\mathbb{P}(A_n)\right) = 0$$

where we have used the fact that $1 - x \leq \exp(-x)$ for $0 \leq x \leq 1$. Therefore, $\mathbb{P}\left(\bigcup_{n\geq 1} A_n\right) = 1$.

Note: The first equality above is "obviously true", but actually needs a proof (not required in the homework): if $(A_n, n \ge 1)$ is a countable sequence of independent events, then it holds that $\mathbb{P}(\bigcap_{n\ge 1}A_n) = \prod_{n\ge 1}\mathbb{P}(A_n)$. Here is why: define $B_n = \bigcap_{k=1}^n A_k$. Observe that $\bigcap_{n\ge 1}A_n = \bigcap_{n\ge 1}B_n$ and $B_n \supset B_{n+1}$ for every $n \ge 1$, so by the continuity property of \mathbb{P} ,

$$\mathbb{P}(\bigcap_{n\geq 1}A_n) = \mathbb{P}(\bigcap_{n\geq 1}B_n) = \lim_{n\to\infty}\mathbb{P}(B_n) = \lim_{n\to\infty}\prod_{k=1}^n\mathbb{P}(A_k) = \prod_{n\geq 1}\mathbb{P}(A_n)$$

b) By exactly the same argument as above, we can prove $\mathbb{P}\left(\bigcap_{n\geq N}A_n^c\right) = 0, \forall N\geq 1$, and we have seen in class that this holds true if and only if $\mathbb{P}\left(\bigcup_{N\geq 1}\bigcap_{n\geq N}A_n^c\right) = 0$, i.e. $\mathbb{P}\left(\bigcap_{N\geq 1}\bigcup_{n\geq N}A_n\right) = 1$.

c) If for some $\varepsilon > 0$, $\sum_{n \ge 1} \mathbb{P}(\{|X_n| \ge \varepsilon\}) = +\infty$, then by part b), $\mathbb{P}(\{|X_n| \ge \varepsilon \text{ infinitely often}\}) = 1$. This says that almost sure convergence (towards the limiting value 0) of the sequence X_n does not hold, as for this convergence to hold, we would need exactly the opposite, namely that for every $\varepsilon > 0$, $\mathbb{P}(\{|X_n| \ge \varepsilon \text{ infinitely often}\}) = 0$.

d1) For any fixed $\varepsilon > 0$, $\mathbb{P}(\{|X_n| \ge \varepsilon\}) = p_n$ for sufficiently large n, so the minimal condition ensuring convergence in probability is simply $p_n \xrightarrow[n \to \infty]{} 0$ (said otherwise, $p_n = o(1)$).

d2) $\mathbb{E}((X_n - 0)^2) = n^2 p_n$, so the minimal condition for L^2 convergence is $p_n = o(\frac{1}{n^2})$.

d3) Using the two Borel-Cantelli lemmas (both applicable here as the X_n are independent), we see that the minimal condition for almost sure convergence is $\sum_{n\geq 1} p_n < +\infty$, satisfied in particular if $p_n = O(n^{-1-\delta})$.

e1) We have in this case, for any fixed $\varepsilon > 0$:

$$\mathbb{P}(\{|Y_n| \ge \varepsilon\}) = 2\int_{\varepsilon}^{+\infty} dx \, \frac{1}{\pi} \, \frac{\lambda_n}{\lambda_n^2 + x^2} = \frac{2}{\pi} \left(\frac{\pi}{2} - \arctan\left(\frac{\varepsilon}{\lambda_n}\right)\right) \xrightarrow[n \to 0]{} 0$$

if and only if $\lambda_n \xrightarrow[n \to \infty]{} 0$.

e2) $\mathbb{E}(Y_n^2) = +\infty$ in all cases, so L^2 convergence does not hold.

e3) Observe first that by the change of variable $y = \lambda_n x$,

$$\mathbb{P}(\{|Y_n| \ge \varepsilon\}) = 2\int_{\varepsilon}^{+\infty} dy \, \frac{\lambda_n}{\pi \left(\lambda_n^2 + y^2\right)} = 2\int_{\varepsilon/\lambda_n}^{+\infty} dx \, \frac{1}{\pi (1+x^2)} \simeq 2\int_{\varepsilon/\lambda_n}^{+\infty} dx \, \frac{\lambda_n}{\pi x^2} = \frac{2\lambda_n}{\pi \varepsilon}$$

when λ_n is small. So the minimal condition for almost sure convergence is $\sum_{n\geq 1} \lambda_n < +\infty$, satisfied in particular if $\lambda_n = O(n^{-1-\delta})$.