Solutions to Homework 5

Exercise 1. a) Using $\psi(x)=x^{2}$ or $\psi(x)=\sigma^{2}+x^{2}$ in Chebyshev's inequality leads to respectively

$$
\mathbb{P}(\{X \geq t\}) \leq \frac{\sigma^{2}}{t^{2}} \quad \text { and } \quad \mathbb{P}(\{X \geq t\}) \leq \frac{2 \sigma^{2}}{\sigma^{2}+t^{2}}
$$

which is not what we want. Using the hint (with $b \geq 0$ in order to satisfy the hypotheses), we obtain

$$
\mathbb{P}(\{X \geq t\}) \leq \frac{\mathbb{E}\left((X+b)^{2}\right)}{(t+b)^{2}}=\frac{\sigma^{2}+b^{2}}{(t+b)^{2}}
$$

Optimizing over the parameter b, we find that best possible bound is obtained by setting $b^{*}=\frac{\sigma^{2}}{t}$ (which is non-negative), leading to

$$
\mathbb{P}(\{X \geq t\}) \leq \frac{\sigma^{2}}{\sigma^{2}+t^{2}}
$$

b) Using Cauchy-Schwarz's inequality with the random variables X and $Y=1_{\{X>t\}}$, we obtain

$$
\mathbb{E}\left(X 1_{\{X>t\}}\right)^{2} \leq \mathbb{E}\left(X^{2}\right) \mathbb{P}(\{X>t\})
$$

On the other hand, we have $\mathbb{E}\left(X 1_{\{X>t\}}\right)=\mathbb{E}(X)-\mathbb{E}\left(X 1_{\{X \leq t\}}\right) \geq \mathbb{E}(X)-t$, therefore the result.

Exercise 2*. a) Let us compute for $\varepsilon>0$:

$$
\begin{aligned}
\mathbb{P}\left(\left\{\left|Y_{n}-0\right|>\varepsilon\right\}\right) & \leq \mathbb{P}\left(\left\{Y_{n}>0\right\}\right)=\mathbb{P}\left(\left\{Y_{n}=1\right\}\right)=\prod_{j=1}^{n} \mathbb{P}\left(\left\{X_{j}=1\right\}\right) \\
& =\prod_{j=1}^{n}\left(1-\frac{1}{(j+1)^{\alpha}}\right) \simeq \exp \left(-\sum_{j=1}^{n} \frac{1}{(j+1)^{\alpha}}\right)
\end{aligned}
$$

where the hint was used in the last (approximate) equality. If $\alpha>1$, then $\sum_{j=1}^{n} \frac{1}{(j+1)^{\alpha}}$ converges to a fixed value $<+\infty$ as $n \rightarrow \infty$, so $\mathbb{P}\left(\left\{Y_{n}>0\right\}\right)$ does not converge to 0 as $n \rightarrow \infty$.
On the contrary, if $0<\alpha \leq 1$, then $\sum_{j=1}^{n} \frac{1}{(j+1)^{\alpha}} \underset{n \rightarrow \infty}{\rightarrow}+\infty$, in which case $\mathbb{P}\left(\left\{Y_{n}>0\right\}\right) \underset{n \rightarrow \infty}{\rightarrow} 0$, so $Y_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} 0$ in this case.
b) The answer is yes. Indeed, we have $\mathbb{E}\left(\left(Y_{n}-0\right)^{2}\right)=\mathbb{E}\left(Y_{n}^{2}\right)=\mathbb{P}\left(\left\{Y_{n}=1\right\}\right)$, so $Y_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{L^{2}}{\rightarrow}} 0$ if and only if $Y_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{\mathbb{P}}{\rightarrow}} 0$.
c) The answer is again yes. Indeed, if for a given realization $\omega, Y_{n}(\omega)=0$, then $Y_{m}(\omega)=0$ for every $m \geq n$, and therefore $\lim _{n \rightarrow \infty} Y_{n}(\omega)=0$. This implies that

$$
\mathbb{P}\left(\left\{\lim _{n \rightarrow \infty} Y_{n}=0\right\}\right) \geq \mathbb{P}\left(\left\{Y_{n}=0\right\}\right)
$$

for any fixed value of $n \geq 1$. If $0<\alpha \leq 1$, we have seen in question a) that $\mathbb{P}\left(\left\{Y_{n}=0\right\}\right) \underset{n \rightarrow \infty}{\rightarrow} 1$. So the above inequality implies that $Y_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow} 0$ almost surely in this case.

Remark. Please note finally that when $\alpha>1$, convergence in probability does not hold, so automatically in this case, quadratic convergence and almost sure convergence do not hold either.

Exercise 3. a) By independence, we obtain

$$
\mathbb{P}\left(\bigcap_{n \geq 1} A_{n}^{c}\right)=\prod_{n \geq 1} \mathbb{P}\left(A_{n}^{c}\right)=\prod_{n \geq 1}\left(1-\mathbb{P}\left(A_{n}\right)\right) \leq \prod_{n \geq 1} \exp \left(-\mathbb{P}\left(A_{n}\right)\right)=\exp \left(-\sum_{n \geq 1} \mathbb{P}\left(A_{n}\right)\right)=0
$$

where we have used the fact that $1-x \leq \exp (-x)$ for $0 \leq x \leq 1$. Therefore, $\mathbb{P}\left(\bigcup_{n \geq 1} A_{n}\right)=1$.
Note: The first equality above is "obviously true", but actually needs a proof (not required in the homework): if ($A_{n}, n \geq 1$) is a countable sequence of independent events, then it holds that $\mathbb{P}\left(\cap_{n \geq 1} A_{n}\right)=\prod_{n \geq 1} \mathbb{P}\left(A_{n}\right)$. Here is why: define $B_{n}=\cap_{k=1}^{n} A_{k}$. Observe that $\cap_{n \geq 1} A_{n}=\cap_{n \geq 1} B_{n}$ and $\bar{B}_{n} \supset B_{n+1}$ for every $n \geq 1$, so by the continuity property of \mathbb{P},

$$
\mathbb{P}\left(\cap_{n \geq 1} A_{n}\right)=\mathbb{P}\left(\cap_{n \geq 1} B_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(B_{n}\right)=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} \mathbb{P}\left(A_{k}\right)=\prod_{n \geq 1} \mathbb{P}\left(A_{n}\right)
$$

b) By exactly the same argument as above, we can prove $\mathbb{P}\left(\bigcap_{n \geq N} A_{n}^{c}\right)=0, \forall N \geq 1$, and we have seen in class that this holds true if and only if $\mathbb{P}\left(\bigcup_{N \geq 1} \bigcap_{n \geq N} A_{n}^{c}\right)=0$, i.e. $\mathbb{P}\left(\bigcap_{N \geq 1} \bigcup_{n \geq N} A_{n}\right)=1$.
c) If for some $\varepsilon>0, \sum_{n \geq 1} \mathbb{P}\left(\left\{\left|X_{n}\right| \geq \varepsilon\right\}\right)=+\infty$, then by part b), $\mathbb{P}\left(\left\{\left|X_{n}\right| \geq \varepsilon\right.\right.$ infinitely often $\left.\}\right)=$ 1. This says that almost sure convergence (towards the limiting value 0) of the sequence X_{n} does not hold, as for this convergence to hold, we would need exactly the opposite, namely that for every $\varepsilon>0, \mathbb{P}\left(\left\{\left|X_{n}\right| \geq \varepsilon\right.\right.$ infinitely often $\left.\}\right)=0$.
d1) For any fixed $\varepsilon>0, \mathbb{P}\left(\left\{\left|X_{n}\right| \geq \varepsilon\right\}\right)=p_{n}$ for sufficiently large n, so the minimal condition ensuring convergence in probability is simply $p_{n} \underset{n \rightarrow \infty}{\rightarrow} 0$ (said otherwise, $p_{n}=o(1)$).
d2) $\mathbb{E}\left(\left(X_{n}-0\right)^{2}\right)=n^{2} p_{n}$, so the minimal condition for L^{2} convergence is $p_{n}=o\left(\frac{1}{n^{2}}\right)$.
d3) Using the two Borel-Cantelli lemmas (both applicable here as the X_{n} are independent), we see that the minimal condition for almost sure convergence is $\sum_{n \geq 1} p_{n}<+\infty$, satisfied in particular if $p_{n}=O\left(n^{-1-\delta}\right)$.
e1) We have in this case, for any fixed $\varepsilon>0$:

$$
\mathbb{P}\left(\left\{\left|Y_{n}\right| \geq \varepsilon\right\}\right)=2 \int_{\varepsilon}^{+\infty} d x \frac{1}{\pi} \frac{\lambda_{n}}{\lambda_{n}^{2}+x^{2}}=\frac{2}{\pi}\left(\frac{\pi}{2}-\arctan \left(\frac{\varepsilon}{\lambda_{n}}\right)\right) \underset{n \rightarrow 0}{\rightarrow} 0
$$

if and only if $\lambda_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow} 0$.
e2) $\mathbb{E}\left(Y_{n}^{2}\right)=+\infty$ in all cases, so L^{2} convergence does not hold.
e3) Observe first that by the change of variable $y=\lambda_{n} x$,

$$
\mathbb{P}\left(\left\{\left|Y_{n}\right| \geq \varepsilon\right\}\right)=2 \int_{\varepsilon}^{+\infty} d y \frac{\lambda_{n}}{\pi\left(\lambda_{n}^{2}+y^{2}\right)}=2 \int_{\varepsilon / \lambda_{n}}^{+\infty} d x \frac{1}{\pi\left(1+x^{2}\right)} \simeq 2 \int_{\varepsilon / \lambda_{n}}^{+\infty} d x \frac{\lambda_{n}}{\pi x^{2}}=\frac{2 \lambda_{n}}{\pi \varepsilon}
$$

when λ_{n} is small. So the minimal condition for almost sure convergence is $\sum_{n \geq 1} \lambda_{n}<+\infty$, satisfied in particular if $\lambda_{n}=O\left(n^{-1-\delta}\right)$.

